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Abstract

Our paper introduces a new estimation method for arbitrary temporal heterogeneity in

panel data models. The paper provides a semiparametric method for estimating general

patterns of cross-sectional specific time trends. The methods proposed in the paper are

related to principal component analysis and estimate the time-varying trend effects using

a small number of common functions calculated from the data. An important application

for the new estimator is in the estimation of time-varying technical efficiency considered in

the stochastic frontier literature. Finite sample performance of the estimators is examined

via Monte Carlo simulations. We apply our methods to the analysis of productivity trends

in the U.S. banking industry.

JEL Classification: C13, C14, C22, C23, D24, G21.

Key words and phrases: Time trends, panel models, principal component analysis, smooth-

ing splines, banking efficiency.
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1 Introduction

Substantial research interest has focused on controlling for unobserved heterogeneity in

panel models. Work by Park and Simar and Park, Sickles, and Simar (1994, 1998, 2003,

2007), and Sickles (2005) has focused on semi-parametric efficient panel data estimators for

the standard fixed and random effects models with various specifications, including autore-

gressive errors and dynamic models. As the specifications of unobserved heterogeneity

become more and more general, in particular allowing for temporal variation in the un-

observed effects, and as trend stationarity of individual cross-sections comes under closer

scrutiny, the proper specification of time effects becomes no less important than the speci-

fication of a difference or trend stationary time series (Nelson and Plosser, 1982; Maddala

and Kim, 1998; Kao and Chiang, 2000; Baltagi, Egger, and Pfaffermayr, 2003; Mark and

Sul, 2003, Chang, 2004).

In this paper, we extend the random and fixed effects model in such a way that we do

not impose any explicit restrictions on the temporal pattern of individual effects. They are

considered as random functions of time, representing a sample of smooth individual time

trends. Detailed modelling and analysis of the general structure of these trends are the

central points of our methodology. This goal is particularly important in our application to

stochastic frontier analysis, where individual effects allow to access time-varying technical

efficiencies of banks in the U. S. banking system.

The basic qualitative assumption is a fairly smooth, slowly varying local behavior of

trends, although they may have pronounced effects on temporal patterns on the long-run.

We formalize this idea and show that our model can be used for virtually any smooth

pattern of temporal and cross-sectional changes in unobserved heterogeneity (time trends)

and allows for the possibility that parameter heterogeneity is due to variables other than

the constant term. This generality is accomplished by approximating the effect terms

nonparametrically. The approach is based on a factor model, where time-varying individual

effects are represented by linear combinations of a small number of unknown basis functions,

with coefficients varying across cross-sectional units. Fixed effects, basis functions and

corresponding coefficients are estimated from the data using methods related to principal

component analysis coupled with smoothing spline techniques. Asymptotic distributions of

the new estimators are derived, and rank tests are applied to determine the dimensionality of

the factor model. Furthermore, goodness-of-fit tests of pre-specified parametric models are

elaborated. Simulation experiments indicate that in finite samples our method works much
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better than other well known time-varying effects estimators. As an illustration, the effects

are interpreted in the context of a stochastic frontier production function (Aigner, Lovell,

and Schmidt, 1977) and our method is applied to the analysis of time-varying technical

efficiency in the U.S. banking industry.

Factor models related to our setup have already been extensively studied in the econo-

metric literature. Among others, important contributions are given by the work of Forni

and Lippi (1997), Forni and Reichlin (1998), Stock and Watson (2002), Forni et al. (2000),

Bai and Ng (2002), Bernanke and Boivin (2003) or Ahn, Lee, and Schmidt (2005). Bai

(2003, 2009) provides a general inferential theory. Our approach fully integrates the panel

and factor models. It allows us to simultaneously estimate fixed effects, common factors

(basis functions), and individual factor scores under a wide variety of conditions, includ-

ing the possible existence of dynamic effects and/or correlations between individual effects

and explanatory variables. Different from existing work, the asymptotic theory also covers

situations where dynamic effects follow non-stationary time series models, as for example

random walks.

Another related branch of research is given by the statistical literature on ”functional

data analysis” which deals with the analysis of multiple smooth curves. For an overview

one may consult the book by Ramsay and Silverman (1997). Explicit factor models and

corresponding inferential results based on ”functional principal component analysis” are

given, for example, by Kneip (1994), Ferré (1995), or Kneip and Utikal (2001) for different

applications. An essential feature of our approach, taken from this literature, is the use of

nonparametric smoothing techniques as an inherent part of the estimation procedure. The

asymptotic theory of Section 3.2 indicates that econometric factor models in other contexts

may also benefit from incorporating smoothing procedures, since compared to standard

results one may then achieve dramatically improved rates of convergence when estimating

common factors.

The remainder of the paper is organized as follows. The basic setup is described in

Section 2. Section 3 introduces our new estimator for arbitrary time-varying effects, derives

its asymptotic distribution, and provides other analytical results for optimal choice for the

number of principal components and smoothing parameters. The finite sample performance

of our new estimator is evaluated using Monte Carlo simulations in section 4. In Section 5

we use the new estimator to analyze the technical efficiency of banks in the U. S. banking

system. Concluding remarks follow in Section 6. The mathematical proofs are collected in
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the Appendix.

2 Model

2.1 Basic Setup

Panel studies in econometrics provide data from a sample of individual units where each unit

is observed repeatedly over time . Econometric analysis then aims to model the variation

of some response variable Y in dependence of a vector of explanatory variables X ∈ IRp.

We will assume panel data based on a balanced design with T equally spaced repeated

measurements per individual. The resulting observations of n individuals can then be

represented in the form (Yit, Xit), t = 1, . . . T , i = 1, . . . , n, where the index i denotes

individual units (e.g. firms, households, etc.) and the index t denotes time periods. We

consider the model

Yit = β0(t) +

p∑
j=1

βjXitj + vi(t) + εit, i = 1, . . . , n, t = 1, . . . , T, (1)

where β0(t) denotes a general average function, and vi(t) are non-constant individual effects.

In order to ensure identifiability we require that
∑n

i=1 vi(t) = 0 for all t. We are mainly

interested in analyzing β and vi(t). The influence of β0(t) can be eliminated by using

centered variables Yit− Ȳt, Xijt− X̄tj , where Ȳt = 1
n

∑n
i=1 Yit and X̄tj = 1

n

∑n
i=1Xitj . Then

Yit − Ȳt =

p∑
j=1

βj(Xitj − X̄tj) + vi(t) + εit − ε̄i, i = 1, . . . , n, t = 1, . . . , T, (2)

with ε̄t = 1
n

∑n
i=1 εit. Note that after having estimated β and vi(t), the average function

β0(t) may be estimated in a final step of our analysis (see Section 3).

In this approach “individual effects” vi(t) necessarily play a more important role than in

textbook panel data models. Identifiability of (1) requires that all variablesXitj , j = 1, . . . , p

possess considerable variation over t. All individual differences are captured by vi(t), and

this includes the effects of additional variables, like e.g. socioeconomic attributes, which

characterize individuals but do not change over time. For example, suppose that there are

q additional explanatory variables Xi,p+1, . . . , Xi,p+q which do not change over time. The

traditional framework then leads to the model Yit = β0+
∑p

j=1 βjXitj+
∑p+q

j=p+1 βjXij+τ i+

εit with constant individual coefficients τ i. In model (1), vi(t) then is a constant function

with vi(t) ≡
∑p+q

j=p+1 βjXij + τ i.
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Our focus lies on estimating and analyzing vi(t), t = 1, . . . , T . This is of course moti-

vated by our application in the field of stochastic frontier analysis, where individual effects

determine technical efficiencies and are the main quantity of interest. We will additionally

rely on the following structural assumption:

Assumption 1. For some fixed L ∈ {0, 1, 2, . . . }, L < T , there exists an L-dimensional

subspace LT of IRT such that vi ∈ LT holds with probability 1.

The space LT as well as its dimension L are unknown. But the assumption implies that

vi can be parametrized in terms of suitable basis functions (common factors) g1, . . . , gL with

LT := span{g1, . . . , gL} and corresponding individual coefficients:

vi(t) =
L∑
r=1

θirgr(t). (3)

The centered model (2) can then be rewritten in the form

Yit − Ȳt =

p∑
j=1

βj(Xitj − X̄tj) +
L∑
r=1

θirgr(t) + εit − ε̄t, i = 1, . . . , n, t = 1, . . . , T (4)

Our approach consists in using the data in order to estimate L as well as basis functions

g1, . . . , gL and corresponding coefficients θir.

Parametric mixed effects models of the form (4) are widely used in applications and

assume that individual effects can be modeled by linear combinations of pre-specified basis

function (e.g. polynomials). For example, in the context of production frontier analysis

Cornwell, Schmidt, and Sickles (1990) assume that the vi can be modeled by quadratic

polynomials. In our notation, then L = 3 and LT is the space of all quadratic polynomials.

Obviously, our approach is much more flexible and avoids misspecifications by using the

data to determine the structure of basis functions.

Indeed, it does not seem to be very restrictive to require that (3) holds for some L.

Formally, (3) is always fulfilled if for all sufficiently large n, T the empirical covariance matrix

Σn,T of the vectors (vi(1), . . . , vi(T ))′, i = 1, . . . , n, possesses rank L. This corresponds to

the setup of factor models as considered by Bai (2003, 2009) or Ahn et al. (2005). Recall,

however, that different from the cited papers our focus lies upon analyzing non-stationary,

smooth time trends.

There are several advantages of (3) compared to a completely nonparametric analysis of

v1, . . . , vn. An important point is more efficient estimation. The basis functions g1, . . . , gL

represent a common functional structure and can thus be determined by combining infor-

mation from all individual curves. They can thus be estimated with much faster rates of
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convergence than an individual vi. Under some additional assumptions, the coefficients θri

are then obtained with the same rate of convergence as if g1, . . . , gL were known. Roughly

speaking, (3) dramatically improves accuracy of estimates and allows to determine v1, . . . , vn

with parametric rates of convergence.

Furthermore, (3) is well-suited for economic interpretation and further econometric anal-

ysis. By g1, . . . , gL we denote general functional components whose structure provide in-

formation about the common functional structure of all individual v1, . . . , vn. There may

exist a substantial interpretation in terms of general economic developments.

All differences between individuals are captured by the coefficients θir. For exam-

ple, a standard panel model as discussed above leads to L = 1, g1(t) ≡ 1, and θi1 =∑p+q
j=p+1 βjXij + τ i. When having estimated θi1, estimates of βp+1, . . . , βp+q can then be

obtained from a linear regression of θi1 on Xi,p+1, . . . , Xi,p+q. This generalizes to more in-

teresting situations with L ≥ 1 and non-constant functions gr(t). Effects of socioeconomic

or demographic variables which do not change over time may be quantified by regressing

the scores θir on Xi,p+1, . . . , Xi,p+q. In many applications such regressions will constitute

an important step in econometric analysis.

2.2 Identifiability and standardization

An intrinsic problem of factor models is non-uniqueness of common factors. Given some

basis g1, . . . , gL, for every regular L× L matrix A the linear transformation

(g1(t), . . . ,gL(t))′ := A · (g1(t), . . . , gL(t))′, (ϑ1i, . . . , ϑLi)
′ := A−1 · (θ1i, . . . , θLi)′, (5)

leads to a parametrization with alternative basis functions and coefficients such that

vi(t) =
L∑
r=1

θirgr(t) =
L∑
r=1

ϑirgr(t)

holds with probability 1, and LT := span{g1, . . . , gL} = span{g1, . . . ,gL}. Only LT is

uniquely determined but not a particular basis. If for example L = 2 and LT is the

space of all linear functions, then two equivalent parameterization are given by vi(t) =

ϑi1(2t− 5) + ϑi2(t+ 5) and vi(t) = θi1 + θi2t, where θi1 = 5(ϑi2 − ϑi1) and θi2 = 2ϑi1 + ϑi2.

Any underlying, “generic” basis is thus only identifiable up to linear transformations

of the form (5). In order to specify a well-defined estimation problem we will rely on the

following standardization which identifies a suitable parametric representation out of the

equivalence class given by (5):
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(a) 1
n

∑n
i=1 θ

2
i1 ≥ 1

n

∑n
i=1 θ

2
i2 ≥ · · · ≥ 1

n

∑n
i=1 θ

2
iL > 0.

(b) 1
n

∑n
i=1 θir = 0 and 1

n

∑n
i=1 θirθis = 0 for all r, s ∈ {1, . . . , L}, r 6= s.

(c) 1
T

∑T
t=1 gr(t)

2 = 1 and
∑T

t=1 gr(t)gs(t) = 0 for all r, s ∈ {1, . . . , L}, r 6= s.

Provided that n > L, T > L, Conditions (a) - (c) do not impose any restriction, and

they introduce a suitable normalization which ensures identifiability of the components up

to sign changes (instead of θir, gr one may also use −θir,−gr). Note that (a) - (c) lead to

orthogonal vectors gr as well as empirically uncorrelated coefficients θir.
1

In a textbook panel model we have L = 1 and LT is the space of all constant functions.

Our normalization then leads to g1(t) ≡ 1. The model by Battese and Coelli (1992) corre-

sponds to L = 1 and g1(t) = exp(−η(t − T ))/
√

1
T

∑T
s=1 exp(−η(s− T ))2. For L > 1, the

specific structure of gr will usually depend on n and T (gr ≡ gr;n,T ). But the real objects

of interest are the structure of the factor space LT and the distribution of vi within LT . If

there exists a “true” basis g1, . . . ,gL generating vi, then it will necessarily be connected with

g1, . . . , gL by a linear transformation (5) for some (unidentifiable) matrix A, and there is a

unique space LT = {v|v =
∑L

r=1 θrgr, θ1, . . . , θL ∈ IR} = {v|v =
∑L

r=1 ϑrgr, ϑ1, . . . , ϑL ∈
IR} (as e.g. a linear space, a space of quadratic polynomials, etc.). Relation (5) also implies

that there exists a corresponding one-to-one relation between the coefficients ϑir and θir

for any possible realization vi, and the distribution of (θ1i, . . . , θiL) reflects all aspects of

the distribution of vi(t). In this sense conditions (a) - (c) define a specific set of orthogonal

basis functions which can be estimated with a particularly high degree of accuracy (see

Subsection 3.3). Of course, suitable rotations of estimated gr may be applied in subsequent

analysis.

Our estimation procedure will be based on the fact that under the above normalization

g1, g2, . . . are to be obtained as principal components of the sample

v1 = (v1(1), . . . , v1(T ))′, . . . , vn = (vn(1), . . . , vn(T ))′. More precisely, let

Σn,T =
1

n

n∑
i=1

vivi
′ (6)

denote the empirical covariance matrix of v1, . . . , vn (recall that
∑n

i=1 vi = 0). We use

λ1 ≥ λ2 ≥ · · · ≥ λT as well as γ1, γ2, . . . , γT to denote the resulting eigenvalues and

orthonormal eigenvectors of Σn,T . Some simple algebra [compare, e.g., with Rao (1958)]
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then shows that

gr(t) =
√
T · γrt for all r = 1, . . . , L, t = 1, . . . , T, (7)

θir =
1

T

T∑
t=1

vi(t)gr(t) for all r = 1, 2, . . . , L, i = 1, . . . , n, (8)

λr =
T

n

n∑
i=1

θ2ir for all r = 1, 2, . . . , L (9)

Furthermore, for all l = 1, 2, . . .

T∑
r=l+1

λr =
1

n

∑
i,t

(vi(t)−
l∑

r=1

θirgr(t))
2 =

1

n
min
g̃1,...,g̃l

n∑
i=1

min
ϑi1,...,ϑil

T∑
t=1

(vi(t)−
l∑

r=1

ϑirg̃r(t))
2 (10)

One can infer from relation (10) that vi ≈
∑l

r=1 θirgr(t) provides the best possible approx-

imation of the functions vi in terms of an l-dimensional linear model. If n > L, T > L,

Model (3) holds for some dimension L if and only if rank(Σn,T ) = L.

Let us consider the structure of possible spaces LT more closely. In the context of mixed

effects models LT will be a deterministic space of smooth functions. As discussed above,

examples are spaces of linear functions or quadratic polynomials. The population analogue

of Σn,T is then the covariance matrix ΣT with ΣT = limn→∞Σn,T a.s, and for large n the

function gr will be close to the corresponding principal component of ΣT .

A basic motivation of our paper is to develop a method which is capable to deal with any

smooth pattern of temporal changes in individual effects. However, from a time series point

of view “smooth” trends are often described by discrete time stochastic processes. In this

case, basis functions are generated by an underlying random mechanism, and consequently

LT is a random space. For example, let us study the case that all vi are generated by

linear combinations of L independent random walks. More precisely, suppose that

LT = span{g1, . . . ,gL}, where gr(t+ 1) = gr(t) + δr,t, r = 1, . . . , L (11)

for some fixed g1(1), . . . ,gL(1) and i.i.d. innovations δr,1, δr,2, . . .with E(δr,t) = 0, var(δr,t) =

σ2δ,r. Moreover, δr,t is independent of δs,t for r 6= s. The structure of LT then depends on

the realizations of δr,t and thus is random. The particular basis g1, . . . ,gL will of course

not correspond to g1, . . . , gL, but recall that necessarily LT = span{g1, . . . , gL} if n, T are

sufficiently large.

By definition, v ∈ LT means that there are parameters ϑ1, . . . , ϑL such that v(t) =∑L
r=1 ϑrgr(t) = v(t − 1) +

∑L
r=1 ϑrδr,t. Each v in LT is thus a random walk with inde-

pendent innovations δv =
∑L

r=1 ϑrδr,t. This of course carries over to our sample functions
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vi =
∑L

r=1 ϑirgr(t). We assume that each statistical unit of the population possesses an

individual, fixed set of coefficients.

3 Estimation and theoretical results

3.1 Estimation

In practice, v1, . . . , vn are unknown and all components of model (4) thus have to be esti-

mated from the data. The idea of our estimation procedure can be described as follows:

Recall that individual effects are supposed to represent “smooth” trends. The first step

of our procedure relies on the use of an auxiliary functional variable νi defined on the in-

terval [1, T ] which interpolates the T different values of vi. Estimates β̂ and functional

approximations ν̂i are determined by least squares, where smoothness of ν̂i is controlled by

a roughness penalty. Then an estimate v̂i(t) of vi(t) is defined as v̂i(t) := ν̂i(t), t = 1, . . . , T .

This corresponds to a penalized least squares approach similar to methods proposed, for

example, by Engle et al. (1986), Speckman (1988), or Härdle et al. (2000). Two further

steps of our procedure then provide estimates ĝr and θ̂ir of the components of the factor

decomposition. It will be shown in Section 3.2 that
∑L

r=1 θ̂irĝr provide much more efficient

estimates of vi than the purely nonparametric estimates v̂i.

Let us first introduce some additional notations. Let Ȳt = 1
n

∑n
i=1 Yit, Ȳ = (Ȳ1, . . . , ȲT )′,

Yi = (Yi1 . . . , YiT )′ and εi = (εi1, . . . , εiT ). Furthermore, let Xij = (Xi1j , . . . , XiT j)
′, X̄tj =

1
n

∑n
i=1Xitj , and X̄j = (X̄1j , . . . , X̄Tj)

′. We will use Xi and X̄ to denote the T ×p matrices

with elements Xitj and X̄tj .

Step 1: For a preselected smoothing parameter κ > 0 determine estimates β̂1, . . . , β̂p

and functional approximations ν̂1, . . . , ν̂n by minimizing

n∑
i=1

1

T

∑
t

(
Yit − Ȳt −

p∑
j=1

βj(Xitj − X̄tj)− νi(t)
)2

+
n∑
i=1

κ
1

T

∫ T

1
(ν

(m)
i (s))2ds (12)

over all possible values of β and all m-times continuously differentiable functions ν1, . . . , νn

on [1, T ]. Then estimate vi(t) by v̂i(t) := ν̂i(t), t = 1, . . . , T , i = 1, . . . , n. Here, ν
(m)
i

denotes the m-th derivative of νi.

Spline theory implies that any solution ν̂i, i = 1, . . . , n, of (12) possess an expansion

ν̂i(t) =
∑T

j=1 ζ̂jizj(t) in terms of a natural spline basis z1, . . . , zT of order 2m (for a discus-

sion of natural splines and definitions of possible basis functions see, for example, Eubank,

1988). In practice, one will often choose m = 2 which leads to cubic smoothing splines.
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If Z and A denote T × T matrices with elements {zj(t)}j,t=1,...,T and

{
∫ T
1 z

(m)
j (s)z

(m)
k (s)ds}j,k=1,...,T , the above minimization problem can be reformulated in

matrix notation: Determine β̂ = (β̂1, . . . , β̂p)
′ and ζ̂i = (ζ̂1i, . . . , ζ̂T i)

′ by minimizing

n∑
i=1

(
‖Yi − Ȳ − (Xi − X̄)β − Zζi‖2 + κζ ′iAζi

)
, (13)

where ‖ · ‖ denotes the usual Euclidean norm in IRT , ‖a‖ =
√
a′a.

Note that Z is a regular T × T matrix. It is then easily seen that with

Zκ = Z(Z ′Z + κA)−1Z ′ =
(
I − κ(Z ′)−1AZ−1

)−1
the solutions are given by

β̂ =

(
n∑
i=1

(Xi − X̄)′(I −Zκ)(Xi − X̄)

)−1 n∑
i=1

(Xi − X̄)′(I −Zκ)(Yi − Ȳ ) (14)

as well as

ζ̂i = (Z ′Z + κA)−1Z ′(Yi − Ȳ − (Xi − X̄)β̂).

Therefore,

v̂i = Zζ̂i = Zκ(Yi − Ȳ − (Xi − X̄)β̂) (15)

estimates vi = (vi(1), . . . , vi(T ))′.

Note that Zκ is a positive semi-definite, symmetric matrix. All eigenvalues of Zκ take

values between 0 and 1. Moreover, tr(Z2
κ) ≤ tr(Zκ) ≤ T .

Step 2: Determine the empirical covariance matrix Σ̂n,T of

v̂1 = (v̂1(1), v̂1(2), . . . , v̂1(T ))′, . . . , v̂n = (v̂n(1), v̂n(2), . . . , v̂n(T ))′ by

Σ̂n,T =
1

n

n∑
i=1

v̂iv̂
′
i

and calculate its eigenvalues λ̂1 ≥ λ̂2 ≥ . . . λ̂T and the corresponding eigenvectors γ̂1, γ̂2, . . . , γ̂T .

Step 3: Set ĝr(t) =
√
T · γ̂rt, r = 1, 2, . . . , L, t = 1, . . . , T , where γ̂rt is the t−th element

of the eigenvector γ̂r. For all i = 1, . . . , n then determine θ̂1i, . . . , θ̂Li by minimizing

T∑
t=1

Yit − Ȳt − p∑
j=1

β̂j(Xitj − X̄tj)−
L∑
r=1

θriĝr(t)

2

(16)

with respect to θ1i, . . . , θLi.
2
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Remarks:

1) In spite of the use of an auxiliary functional variable in Step 1 of our procedure, the

required “smoothness” of vi(t) has to be interpreted in a very general sense. In Section

3.2 we will show that the estimators adopt fast rates of convergence if all vi are sufficiently

smooth in the sense that 1
T

∑T−1
t=2 (vi(t − 1) − 2vi(t) + vi(t + 1))2 is small compared to

1
T

∑T
t=1 vi(t)

2.

2) An obvious problem is the choice of κ. A possible approach based on cross-validation

will be discussed at the end of Subsection 3.2.

3.2 Asymptotic Theory

We now consider properties of our estimators. It is assumed that individual units are

drawn by independent random sampling from the underlying population. We then analyze

the asymptotic behavior as n, T →∞. We do not impose any condition on the magnitude

of the quotient T/n. Our analysis will be based on the use of cubic smoothing splines with

m = 2. We will require that Assumption 1 holds with a fixed dimension L for all n, T .

The following additional assumptions now provide the basis of our theoretical analysis.

We will write λmin(A) and λmax(A) to denote the minimal and maximal eigenvalues of a

symmetric matrix A, and gr will be used to represent the vector (gr(1), . . . , gr(T ))′.

Assumption 2. There exists a nondecreasing function c(T ) of T such that for all r, s =

1, . . . , L, r 6= s

- E( 1
T

∑T
t=1 vi(t)

2) = O(c(T )),

- 1
n

∑n
i=1 θ

2
ir = OP (c(T )), 1

n

∑n
i=1 θ

4
ir = OP (c(T )2),

- c(T ) = OP ( 1
n

∑n
i=1 θ

2
ir), c(T ) = OP (| 1n

∑n
i=1 θ

2
ir − 1

n

∑n
i=1 θ

2
is|)

Note that by (9) and (10) we have 1
nT

∑n
i=1

∑T
t=1 vi(t)

2 =
∑L

r=1
1
n

∑n
i=1 θ

2
ir, as well as∑L

r=l
λr
T =

∑L
r=l

1
n

∑
i=1n

θ2ir = 1
nT min

g̃1,...,g̃l

∑n
i=1 min

ϑi1,...,ϑil

T∑
t=1

(vi(t)−
l∑

r=1
ϑirg̃r(t))

2

for all l = 1, . . . , L − 1. By requiring that 1
n

∑n
i=1 θ

2
ir = OP (c(T )) as well as c(T ) =

OP ( 1
n

∑n
i=1 θ

2
ir) we assume that each component 1

n

∑n
i=1 θ

2
ir increases exactly with rate c(T ).

This is obviously equivalent to saying that for any l < L the error in approximating vi by

the best possible model with only l components increases exactly with rate c(T ). Constants

have to be different, for example
∑n

i=1 θ
2
i1 may be equal to c(T )/2,

∑n
i=1 θ

2
i2 to c(T )/10,

etc.

13



Assumption 3. There exists a nonincreasing function b(T ) of T such that as n, T →∞
the second order differences of vi(t) satisfy

E

(
1

T

T−1∑
t=2

(vi(t− 1)− 2vi(t) + vi(t+ 1))2

)
= O(b(T )) (17)

By Proposition 1 in the appendix the value of b(T ) determines the bias of a smoothing

spline estimator for all values of κ and may serve as a measure of smoothness. An even more

interesting quantity is b(T )/c(T ). It will be shown in Theorem 1 that the smaller b(T )/c(T )

the faster the corresponding rate of convergence for suitable choice of κ. Of course, by

Assumption 1) smoothness of vi reflects the degree of smoothness of the underlying basis

functions.

In order to clarify the impact of the above assumption, let us study some illustrative

scenarios.

Example 1: Traditional smoothness. We first consider the typical setup of nonparametric

mixed effects models where LT is a deterministic space generated by smooth, at least

twice continuously differentiable basis functions. The corresponding asymptotics can be

formalized by assuming that there are i.i.d. non-zero random functions ν1, . . . , νn on L2[0, 1]

such that νi(
t
T ) = vi(t) for t = 1, . . . , T . Then c(T ) = 1. The functions ν1, . . . , νn are a.s.

twice continuously differentiable with E(
∫ 1
0 ν
′′
i (t)

2dt) <∞ and 0 < E(
∫ 1
0 νi(t)

2dt) <∞. By

Taylor expansions we obtain νi(
t
T )− 2νi(

t−2
T ) + νi(

t−4
T ) = 1

T 2 ν
′′
i (t) + oP ( 1

T 2 ) and therefore

E
(

1
T

∑T
t=5(vi(t)− 2vi(t− 2) + vi(t− 4))2

)
= 1

T 4E(
∫ 1
0 ν
′′
i (t)

2dt) + o( 1
T 4 ).

The relevant quantities in Assumptions 2 and 3 thus amount to

c(T ) = 1, b(T ) = b(T )/c(T ) = 1/T 4. (18)

In this context it is of course also possible to deal with less smooth situations. If the

νi are only piecewise smooth, possessing a finite number of discontinuities, then b(T ) =

b(T )/c(T ) = 1/T .

Example 2: Random walks. Recall the discussion in Section 2.2 and assume that vi are

generated by a linear combination of L independent random walks as defined by (11). Then

E( 1
T

∑T
t=1 vi(t)

2) = O(T ). However, the mean squared second differences of random walks

remain bounded as T →∞. Therefore, in this situation we can assume that Assumption 2

and 3 holds with

c(T ) = T, b(T ) = 1, b(T )/c(T ) = 1/T (19)
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Note that if LT = span{g1, . . . ,gL}, where g1, . . . ,gL are I(2) processes whose first differ-

ences are random walks, then E( 1
T

∑T
t=1 vi(t)

2) = O(T 2), while the mean squared second

differences still remain bounded. Then c(T ) = T 2, b(T ) = 1, b(T )/c(T ) = 1/T 2.

We also want to emphasize that our approach is also able to deal with non-I(q) processes.

Let LT = span{g1, . . . ,gL} with gr(t) =
√
|gr(1)2 + δr,1 + δr,2 + · · ·+ δr,t|, where gr(1)

and δr,t satisfy the same conditions as in the above random walk example. The stochastic

trend induced by this process cannot be eliminated by differencing, since for any q = 1, 2, . . .

the q-th order differences of rt are not stationary. On the other hand, the resulting vi(t)

are reasonably smooth. It is easily checked that then Assumptions 2) and 3) hold with

c(T ) = T 1/2, b(T ) = T−1/2, b(T )/c(T ) = 1/T .

Two final assumptions now concern the behavior of Xit,j and of the error term.

Assumption 4. There exists a nondecreasing function d(T ) ≤ c(T ) of T with d(T ) = o(T )

such that as n, T →∞ E( 1
T

∑T
t=1X

2
it,j) = O(d(T )) holds for all j = 1, . . . , p as n, T →∞.

Furthermore, there is a constant C0 <∞ such that for all κ ≥ 1

E

(
λmax

(
[

n∑
i=1

(Xi − X̄)′(I −Zκ)(Xi − X̄)]−1

))
≤ C0

1

nT
, (20)

and there exists a constant C1 <∞ such that for all j = 1, . . . , p and all vectors a ∈ RT

a′(I −Zκ) ·E
(
(Xij − X̄j)(Xij − X̄j)

′| LT
)

(I −Zκ)a ≤ C1 · ‖(I −Zκ)a‖2. (21)

holds with probability 1 for all sufficiently large n, T .

If LT is a deterministic space, then of course E(Z|LT ) = E(Z) for any random variable

Z.

Assumption 5. The error terms εit are i.i.d. with E(εit) = 0, var(εit) = σ2 > 0, and

E(ε8it) <∞. Moreover, εit is independent from vi(s) and Xis,k for all t, s, j.

Although, as shown above, our approach is able to cope with trends which do not fit into

the usual I(q) framework, some of our assumptions are restrictive from a time series point of

view. Apart from assuming i.i.d. errors in Assumption 5, Assumption 4 contains regularity

conditions which impose restrictions on the design matrix. It is essentially required that the

time paths {Xitj − X̄ij}t are “less smooth” than those of {vi(t)}t. In particular, stationary

processes generate non-smooth time paths. Note, however, that some interesting cases, as

for example cointegration between Y and X, are excluded. We believe that more general

results can be obtained, but part of the methodology may have to be adapted to the specific

situation.
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However, Assumption 4 does not impose any strong restriction when dealing with sta-

tionary processes Xit satisfying d(T ) = 1. To illustrate the point, consider the simplest

case p = 1 and assume that Xit = X̃it + δi, where {X̃it}t are independent realizations of a

zero mean ARMA(q1, q2) process and δi are independent, zero mean random variables with

variance ∆2. Then

E
(
(Xi − X̄)(Xi − X̄)′

)
= (1− 1

n
)Γ + ∆2 · 11′,

where Γ is the autocovariance matrix of the underlying ARMA(q1, q2) process. Since p = 1

we have E[(Xi − X̄)′(I − Zκ)(Xi − X̄)]) = E[λmax((Xi − X̄)′(I − Zκ)(Xi − X̄))]), and it

is easily checked that this term is proportional to T for all κ > 1. Relation (20) is an

immediate consequence. Moreover,

E
(
(Xi − X̄)(Xi − X̄)′| LT

)
= (1− 1

n
)Γ|LT + E(δ2i | LT ) · 11′,

where Γ|LT denotes the corresponding conditional autocovariance matrix given LT . Since

by construction of Zκ, Zκ1 = 1 for 1 = (1, 1, . . . , 1)′, we arrive at

a′(I −Zκ)E
(
(Xij − X̄)(Xij − X̄)′| LT

)
(I −Zκ)a = a′(I −Zκ)Γ|LT (I −Zκ)a.

For any stationary ARMA(q1, q2) the maximal eigenvalue of Γ remains bounded as T →
∞, and hence (21) is necessarily fulfilled for deterministic spaces LT with Γ|LT = Γ. If

LT is generated by stochastic processes, then the structure of the ARMA(q1, q2)-process

characterizing the explanatory variable may be correlated with these processes, but (21)

will remain true if λmax(Γ|LT ) remains stochastically bounded, which does not seem to be

a very strong condition.

Our estimator can be seen as a generalization of the LSDV estimator in a standard

panel model. Let us focus on the simple situation that L = 1, vi(t) = θi1 and that there is

some correlation between θi1 and Xi. In dynamic panel models as well as some nonlinear

models it is well-known that the LSDV estimator of the coefficients β then suffers from

an incidental parameter bias (see e.g. Hahn and Newey, 2004, for a possible approach to

bias reduction in nonlinear models). However, for a linear panel model with exogeneous

regressors and i.i.d. error terms (as considered in our paper) the LSDV estimator β̂ of β

is unbiased even in the presence of correlations. In this context an incidental parameter

problem only exists for the estimates θ̂i1 of the individual effects vi(t) ≡ θi1 (Baltagi, 2001).

These estimates θ̂i1 are inconsistent unless T →∞.
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Our results reflect this situation. If a standard panel model with correlated θi1 and

Xi our β-estimates remain unbiased, but by Theorem 1 (c) consistency of θ̂i1 requires

that T → ∞. Before stating our main theorem we have to introduce some additional

notation. Let ST denote the linear space of all vectors ã ∈ IRT which are straight lines,

i.e. ãt = α0 + α1t for some α0, α1 ∈ IR, t = 1, . . . , T , and let S∗T ⊂ IRT be the linear

space orthogonal to ST . Any vector a ∈ IRT can be written in the form a = ã+ a∗, where

ã ∈ ST and a∗ ∈ S∗T is the nonlinear part of a orthogonal to straight lines. Consequently,

vi = ṽi + v∗i and Xij = X̃ij + X∗ij can be decomposed into linear and nonlinear parts with

ṽ, X̃ij ∈ ST and v∗i , X
∗
ij ∈ S∗T .

We will say that vi and Xi are “uncorrelated up to linear components” (ulc-

uncorrelated) if E(v∗i v
∗
l |X∗,LT ) = E(v∗i v

∗
l |LT ) holds for all i, l ∈ {1, . . . , n}, where X∗ =

(X∗itj)i,t,j .

We want to emphasize that vi and Xi are necessarily ulc-uncorrelated in a standard panel

model with constant individual effects and q additional explanatory variablesXi,p+1, . . . , Xi,p+q

which do not change over time. Then vi ≡ ṽi for the constant function ṽi(t) ≡
∑p+q

j=p+1 βj(Xij−
X̄j) + τ i − τ̄ , and hence v∗i ≡ 0 does not depend at all on X.

By Assumption 4 we necessarily have X∗ 6= 0. The bias of our parameter estimators

β̂ will depend on whether or not vi and Xi are ulc-correlated. In order to provide some

intuition note that a basic property of spline estimators is the fact that for any straight line

ã we have Zκã = ã and (I − Zκ)ã = 0 for all values of κ. When considering the structure

of our estimator β̂ given by (14) it is now easily seen that all linear parts X̃ij and ṽi cancel

out and do not at all influence β̂. Therefore, only correlation between the nonlinear parts

v∗i and X∗ij can create an additional bias.

We will use “Eε” to denote conditional expectation given vi and Xi, i = 1, . . . n. More-

over, X̃i = Xi− X̄. Additionally note that eigenvectors are only unique up to sign changes.

In the following we will always assume that the right ”versions” are used. This will go

without saying.

Recall that we consider theoretical behavior of our estimators as n, T → ∞. Sensible

smoothing parameters have to depend on n, T .3 We will require that parameters κ ≡ κn,T >
0 are of an appropriate order of magnitude such that κb(T ) → 0 as well as κ1/4/T → 0 as

n, T →∞.

Theorem 1. Under the above assumptions we obtain as n, T →∞
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(a) ‖β −Eε(β̂)‖ = OP (
√
bβ(n, T, κ)), where

bβ(n, T, κ) :=


max{1,κ}b(T )

Tn if Xi and vi are ulc-uncorrelated,

max{1,κ}b(T )
T else,

and V
−1/2
n,T (β̂ −Eε(β̂)) ∼ N(0, I), where

Vn,T = σ2

(
n∑
i=1

X̃ ′i(I −Zκ)X̃i

)−1( n∑
i=1

X̃ ′i(I −Zκ)2X̃i

)(
n∑
i=1

X̃ ′i(I −Zκ)X̃i

)−1
= OP

(
1

nT

)
.

Therefore, ‖β − β̂‖ = |β −Eε(β̂)− (β̂ −Eε(β̂))‖ = OP (
√
bβ(n, T, κ) + 1/(nT )).

(b) For all r = 1, . . . , L

T−1/2‖gr−ĝr‖ = OP

(√
κb(T ) + d(T )bβ(n, T, κ)

c(T )
+

√
1

nc(T ) max{1, κ1/4}
+

1

T 2c(T )2

)
,

where κ = min{κ, κ2}.

(c) For all r = 1, . . . , L

|θ̂ri − θri| = OP

(√
T−1 + κb(T ) + d(T )bβ(n, T, κ) + (nmax{1, κ1/4})−1

)
.

Furthermore, if κb(T ) + d(T )bβ(n, T, κ) + (nmax{1, κ1/4})−1 = o(T−1), then

√
T (θ̂1i − θ1i, . . . , θ̂Li − θLi)′ →d N(0, σ2I), i = 1, . . . , n. (22)

(d) ∑n
i=1 ‖vi −

∑L
r=1 θ̂riĝr‖∑n

i=1 ‖vi‖
= OP

√T−1 + κb(T ) + d(T )bβ(n, T, κ) + (nmax{1, κ1/4})−1
c(T )

 .

(e) If additionally T
nmax{1,κ1/4} → 0 as well as Td(T )bβ(n, T, κ)+d(T )

n + 1
Tc(T ) = o

(
T

nmax{1,κ1/4}

)
,

then

n
∑T

r=L+1 λ̂r − (n− 1)σ2 · tr(ZκP̂LZκ)

σ2
√

2n · tr((ZκP̂LZκ)2)
→d N(0, 1), (23)

n · tr(PLΣ̂n,T )− (n− 1)σ2 · tr(ZκPLZκ)

σ2
√

2n · tr((ZκPLZκ)2)
→d N(0, 1), (24)

where P̂L = I − 1
T

∑L
r=1 ĝrĝ

′
r, and PL is the projection matrix projecting into the

n− L dimensional linear space orthogonal to span{Zκg1, . . . ,ZκgL}.
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A proof of the theorem can be found in the appendix. Obviously, convergence rates

depend on the values of c(T ), b(T ) and d(t). As an illustration let us evaluate the rates to

be obtained for the two examples discussed above.

Example 1: Traditional smoothness (continued). If d(T ) = 1, then by (18) optimal

smoothing parameters κ ≡ κn,T for estimating the functional components gr have to increase

with the sample size. More precisely, κ ∼ (nT )−4/5 · T 4 if n = o(T 4) and T = o(n4), which

leads to κb(T ) ∼ (nT )−4/5. Then necessarily bβ(n, T, κ) = o(1/
√
nT ), and the theorem

implies that

T−1/2‖gr − ĝr‖ = OP ((nT )−2/5),

∑n
i=1 ‖vi −

∑L
r=1 θ̂riĝr‖∑n

i=1 ‖vi‖
= OP (T−1/2)

V
−1/2
n,T (β̂ − β) ∼ N(0, I), and

√
T (θ̂1i − θ1i, . . . , θ̂Li − θLi)′ →d N(0, σ2I).

It is immediately seen (22) implies that θ̂ri is estimated as efficiently as in a parametric

model with known functions gr. We want to emphasize that κ ∼ (nT )−4/5 · T 4 corresponds

to an undersmoothing of individual functions. The optimal smoothing parameter for spline

estimation of an individual function vi is of order κind ∼ T−4/5 · T 4 which results in the

usual nonparametric rate of convergence
∑n

i=1 ‖vi − v̂i‖/(
∑n

i=1 ‖vi‖) = OP (T−2/5). Based

on our factor model it is thus possible to estimate the functions vi with a parametric rate

of convergence T−1/2 instead of the nonparametric rate T−2/5 characterizing a completely

nonparametric approach.

Example 2: Random walks (continued). In addition to (19) assume that, as for example

in the case of ARMA(p, q)-processes, Xit satisfies Assumption 4 with d(T ) = 1. Suitable

smoothing parameters κ ≡ κn,T for estimating the functional components gr have to decrease

with the sample size. With κ ∼ (nT )−1/2 we have κb(T ) = (nT )−1/2. The bias in estimating

β is of order κbβ(n, T ) = O(1/
√
nT ) if Xi and vi are ulc-uncorrelated, and κbβ(n, T ) =

O(1/
√
T ) else. It will thus not be negligible compared to the standard error. The additional

requirements ensuring the distributional results in Theorem 1c) hold if vi and Xi are ulc-

uncorrelated, while 1e) additionally requires that n > T . Furthermore,

T−1/2‖gr− ĝr‖ = OP (T−3/2 +(nT )−1/2),

∑n
i=1 ‖vi −

∑L
r=1 θ̂riĝr‖∑n

i=1 ‖vi‖
= OP (T−3/2 +(nT )−1/2),

which shows that the relative error in approximating vi by
∑L

r=1 θ̂riĝr is even smaller than

in the case of traditional smoothness. Note that when approximating vi by nonparametric

estimates v̂i, then variance of the estimator does not decrease with n, and the convergence

rate deteriorates to
∑n
i=1 ‖vi−v̂i‖∑n
i=1 ‖vi‖

= OP (T−1/2).

19



Remarks:

1) The question arises whether it is possible to determine the best smoothing parameter

for estimating g1, g2, . . . directly from the data. A straightforward approach consists in

a “leave-one-individual-out” cross-validation. For a fixed L and i = 1, . . . , n let β̂−i and

ĝr,−i denote the respective estimates of β and gr obtained from the data (Ykj , Xkj), k =

1, . . . , i−1, i+1, . . . , n, j = 1, . . . , T , and let θ̂r,−i denote the corresponding estimates of θri

to be obtained when using β̂−i , ĝr,−i instead of β̂, ĝr in Step 3 of our estimation procedure.

All these estimates depend on κ, and one may approximate an optimal smoothing parameter

by minimizing

CV (κ) :=
1

nT

n∑
i=1

T∑
t=1

(Yit − Ȳt − (Xit − X̄t)β̂−i −
L∑
r=1

θ̂r,−iĝr,−i(t))
2

over κ. Note that by (4) and by the independence of β̂−i, ĝr,−i from εit

Eε[CV (κ)] =
1

nT

n∑
i=1

T∑
t=1

(
(Xit − X̄t)(β − β̂−i) + vi −

L∑
r=1

θ̂r,−iĝr,−i(t)

)2

+
(n− 1)(T − L)

nT
σ2

+OP

(
1

n
[

1

nT

n∑
i=1

T∑
t=1

((Xit − X̄t)(β − β̂−i) + vi −
L∑
r=1

θ̂r,−iĝr,−i(t))
2]1/2

)

holds for all κ. It therefore seems to be reasonable to expect that this approach “in

tendency” selects a κ providing a small mean squared error between true and estimated

model. Cross-validation techniques are standard practice in nonparametric regression, but

even in the random walk example discussed above it will provide smoothing parameters of

the right order of magnitude. Due to bias any sequence κ ≡ κn,T with κ → ∞ as n, T →
will lead to P (CV (κ) > C) → 1 for any constant C > 0, while Theorem 1 implies that

a monotonically decreasing sequence κ ≡ κn,T yields CV (κ) →P σ2. A precise theoretical

analysis is not in the scope of the present paper.

2) Our theoretical results rest upon the assumption of i.i.d. errors. This is different from

Bai (2009) who allows some correlation and heteroskedasticity of εij in both cross-section

and time-series dimension. We expect that results similar to Theorem 1 can be established

in this context, although rates of convergence and, in particular, the distributions in (23)

and (24) may change in dependence of the correlation structure. A precise analysis is not

in the scope of the present paper.
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3.3 Dimensionality and model tests

Result (23) of Theorem 1(e) may be used to estimate the dimension L. A prerequisite is of

course the availability of a reasonable estimator of σ2. We propose to use

σ̂2 :=
1

(n− 1) · tr(I −Zκ)2

n∑
i=1

‖(I −Zκ)(Yi − Ȳ − (Xi − X̄)β̂)‖2. (25)

We want to emphasize that this estimator may have a tendency to overestimate σ2, but it

is suitable for dimension selection (see proof of Theorem 2). Once L has been determined,

a better estimator is σ̃2 = 1
(n−1)T

∑n
i=1 ‖Yi− Ȳ − (Xi− X̄)β̂−

∑L
r=1 θ̂irĝr‖2. It follows from

the results of Theorem 1 that σ̃2 is consistent and may be used in the context of model

tests (see below). We now use the following procedure to determine an estimate L̂ of L:

First select an α > 0 (e.g., α = 1%). For l = 1, 2, . . . determine

∆(l) :=
n
∑T

r=l+1 λ̂r − (n− 1)σ̂2 · tr(ZκP̂lZκ)

σ̂2
√

2n · tr((ZκP̂lZκ)2)
. (26)

Choose L̂ as the smallest l = 1, 2, . . . such that ∆(l) ≤ z1−α, where z1−α is the 1−α quantile

of a standard normal distribution.

The following theorem provides a theoretical justification of this procedure. A proof is

given in the appendix.

Theorem 2. In addition to the assumptions of Theorem 1 assume that T
nmax{1,κ1/4} → 0

as well as Td(T )bβ(n, T, κ) + d(T )
n + 1

Tc(T ) = o
(

T
nmax{1,κ1/4}

)
. Then, lim infn,T→∞P(L̂ =

L) ≥ 1 − α for fixed α > 0. Moreover, if α ≡ αn,T is such that αn,T → 0 and z1−αn,T ≤
log(min{n, T}) as n, T →∞, then limn,T→∞P(L̂ = L) = 1.

There are of course alternative ways for estimating L. Bai and Ng (2002) propose six

related criteria for determining the dimension of a factor model: PCp1 - PCp3 and ICp1 -

ICp3. For example, in our context PCp2 consists in minimizing

1

nT

n∑
i=1

‖Yi − Ȳ − (Xi − X̄)β̂ −
l∑

r=1

θ̂irĝr‖2 + lσ̂2∗
n+ T

nT
log(min{n, T})

over l = 0, 1, . . . , Lmax, where Lmax > L is a maximal possible number of factors, and where

σ̂2∗ is some consistent estimate of σ2. ICp1 - ICp3 use slightly different penalty functions,

thus 1
nT

∑n
i=1 ‖Yi − Ȳ − (Xi − X̄)β̂ −

∑l
r=1 θ̂irĝr‖2 is replaced by log( 1

nT

∑n
i=1 ‖Yi − Ȳ −

(Xi− X̄)β̂−
∑l

r=1 θ̂irĝr‖2) in ICp1 - ICp3. It is now easily seen that under the assumptions
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of Theorem 2 these criteria will lead to consistent estimates of L.4 Different from (26) they

may still be applicable if error terms are correlated. However, we want to emphasize that

for i.i.d. errors our test-based selection method is much more specifically adapted to the

underlying asymptotic distribution of noise components.

Relation (24) may serve to test the validity of a pre-specified parametric model of the

form vi(t) =
∑L

j=1 ϑrigr(t) for some known basis functions gr. If Pg,L denotes the projection

matrix projecting into the n−L dimensional linear space orthogonal to span{Zκg1, . . . , ZκgL},
then the null hypothesis: H0 : vi(t) =

∑L
j=1 ϑrigr(t) is rejected if

n · tr(Pg,LΣ̂n,T ) − (n− 1)σ̃2 · tr(ZκPg,LZκ)

σ̃2
√

2n · tr((ZκPg,LZκ)2)
> z1−α (27)

Obviously, under H0 we have Pg,L = PL, and by (24) the test possesses an asymptotically

correct size. But the derivation of (24) is based on the fact that tr(PLΣn,T ) = 0 and hence

tr(PLΣ̂n,T ) = tr(PL(Σ̂n,T−Σn,T )). If H0 is false, then generally tr(Pg,LΣn,T ) = OP (Tc(T )),

and therefore tr(Pg,LΣ̂n,T ) = tr(Pg,LΣn,T ) + tr(Pg,L(Σ̂n,T −Σn,T )) will in tendency be too

large.

This test can of course be particularly applied to verify the validity of a standard panel

model with constant individual effects. Then L = 1, Pg,L = I − 1
T 11′ with 1 = (1, . . . , 1)′,

c(T ) = 1, and bv(κ) = bw(κ∗) = 0 for all possible choices of κ, κ∗.

4 Simulations

In this section, we investigate the finite sample performances of the new estimator described

in Section 2 (hereafter we will call it KSS estimator) through Monte Carlo experiments. A

competing time-varying individual effects estimator is based on the Cornwell, Schmidt,

and Sickles fixed effects estimator (CSSW, 1990). We specify the time-varying individual

effects as a second-order polynomial in time using this estimator, as the authors did in their

empirical illustration. We also consider the classical time-invariant fixed and the random

effects estimators (Baltagi, 2005). These estimators also have been used extensively in

the stochastic frontier productivity literature wherein the firm effects are interpreted as

measures of relative technical efficiencies.

We consider the panel data model (1):

Yit = β0(t) +

p∑
j=1

βjXitj + vi(t) + εit
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We simulate samples of size n = 30, 100, 300 with T = 12, 30 in a model with p = 2

regressors. The error process εit is drawn randomly from i.i.d. N(0, 1). The values of true

β are set equal to (0.5, 0.5). In each Monte Carlo sample, the regressors are generated

according to a bivariate VAR model as in Park, Sickles, and Simar (2003, 2007):

Xit = RXi,t−1 + ηit, where ηit ∼ N(0, I2), R =

 0.4 0.05

0.05 0.4

 (28)

To initialize the simulation, we choose Xi1 ∼ N(0, (I2 − R2)−1) and generate the samples

using (28) for t ≥ 2. Then, the obtained values of Xit are shifted around three different

means to obtain three balanced groups of firms from small to large. We fix each group at

µ1 = (5, 5)′, µ2 = (7.5, 7.5)′, and µ3 = (10, 10)′. The idea is to generate a reasonable cloud

of points for X. In all of our data generating processes (DGP’s) we set the mean function

β0(t) = 0.

We generate time-varying individual effects in the following ways:

DGP1 & DGP2 : vi(t) = θi0 + θi1
t

T
+ θi2

(
t

T

)2

DGP3 & DGP4 : vi(t) = φirt

DGP5 & DGP6 : vi(t) = υi1g1t + υi2g2t

DGP7 & DGP8 : vi(t) = ξi

DGP9 & DGP10 : vi(t) = ϕi0 + ϕi1
t

T
+ ϕi2

(
t

T

)2

+ φirt + υi1g1t + υi2g2t

where θij (j = 0, 1, 2) ∼i.i.d. 5N(0, 1), ϕij (j = 0, 1, 2) ∼i.i.d. 3N(0, 1), rt+1 = rt +

δt, δt, φi, ξi, υij(j = 1, 2) ∼i.i.d. N(0, 1), g1t = sin(πt/4) and g2t = cos(πt/4). The odd

numbered DGPs are those with exogenous regressors and the even numbered DGPs are

those with endogenous regressors. The correlation between the effects and the second

regressor is chosen to be 0.5.5 DGP1 and DGP2 utilize time varying effects that follow a

second order polynomial in time that varies from cross-section to cross-section and possess

3 common factors. DGP3 and DGP4 specify the effects as random walk processes and

have 1 common factor. DGP5 and DGP6 are considered in order to model effects with

large temporal variations and have 2 common factors. DGP7 and DGP8 are the usual

constant effects models with symmetric effects and of course have 1 common factor. We

consider DGP9 and DGP10 in order to provide some evidence on the usefulness of our

estimator in speaking to the ongoing debate on the number of factors displayed by stock

returns (estimates range between 2 and 10) and macroeconomic time series (estimates range
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between 2 and 7) (Stock and Watson, 2005). DGP9 and DGP10 generate effects with 6

common factors.

For the KSS estimator, cubic smoothing splines were used to approximate vi(t) in step

1, and the smoothing parameter κ was selected by using ‘leave-one-individual-out’ cross-

validation.6 The coefficient parameter β is updated using ĝr(t) obtained in step 3 of (16),

which is found to generate substantial efficiency gains. However, the updated estimates

β̂
(1)

are not plugged into step 2 again because there is no efficiency gain observed for ĝr(t).

Simulation experiments were repeated 1,000 times, except for the DGP’s with n=300. For

those the number of simulations is 500 times.

We now present the simulation results. Because of space limitations, we can not display

all of the Monte Carlo results.7 We do, however, present results for DGP 1, 3, and 9 and

discuss results from the other experiments. We present a variety of performance metrics

for the competing estimators based on DGP1-10. We calculate normalized mean squared

error (MSE), bias, variance, and empirical size (based on a nominal type I error of 0.05) for

the coefficients. The normalized mean squared error is :

R(v̂,v) =

∑n
i=1

∑T
t=1 (v̂i(t)− vi(t))2∑n
i=1

∑T
t=1 v

2
i (t)

.

We also calculate the MSE of the estimated effects as well as the average optimal di-

mensions, L, chosen by ∆(l) criterion we outlined in the previous section. We note that

the optimal dimension, L, is correctly chosen on average for the KSS estimator in all DGPs.

Thus, we can verify the validity of the dimension test ∆(l) discussed in Section 3.

<Insert Tables 1,2,3 about here>

We examine the results for exogenous regressors first and those for endogenous regressors

later. DGP1 is consistent with the assumptions for the time-varying effects of the CSSW

estimator. Hence, we may expect that the CSSW estimator performs reasonably well, which

is confirmed in Table 1. Table 1 also shows that the performances of the KSS estimator

are comparable to those of the CSSW estimator. This implies that the KSS estimator is

quite general and efficient in estimating time-varying effects of the forms of smooth curves

such as the second order polynomials. As such, it is not surprising that the results of the

KSS estimator is much better than those of Within and GLS estimators by any standards.
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This is true even when the data is as small as n = 30 and T = 12. In particular, the KSS

estimator outperforms these estimators in terms of MSE of effects.

DGP3 is considered to evaluate the performance of the estimators for the arbitrary form

of individual effects generated by a random walk. Hence, estimators based on a relatively

simple function of time such as we used for the CSS within estimator is not sufficient for

this type of DGP. However, the KSS estimator does not impose any specific forms on the

temporal pattern of effects, and thus it can approximate any shape of time varying effects.

We may then expect good performances of the KSS estimator even in this situation, and

the results confirm such a belief. The KSS estimator dominantly outperforms the other

estimators. It is particularly conspicuous in terms of MSE of effects. CSSW performs

reasonably well for the effects, but it is no better than the others for other criteria.

DGP5 generates effects with large temporal variations. As T increases, the variations

become large. The other estimators assume pre-specified and simple functional forms, thus

they are expected to perform less satisfactorily for this DGP. The KSS estimator allows

arbitrary functional forms as well as multiple individual effects. Hence, it is expected to

perform well even under this DGP. Indeed, the results show that the KSS estimator performs

very well, especially for large T , with the correct number of L chosen on average.8 On

the other hand, the other estimators suffer from severe distortions in the estimates of the

effects, although coefficient estimates look reasonably good.

DGP7 represents the reverse situation so that there is no temporal variation in the

effects. The Within and GLS estimators work very well. However, the performance of the

KSS estimator is fairly good and comparable to those of the Within and GLS estimators.

These results indicate that the KSS estimator may be safely used even when temporal

variation is not evident. DGP9 is based on a 6 factor model for the effects. The KSS

estimator dominates the other treatments for heterogeneity as the number of cross sections

and times series increase. In all experiments, the KSS estimator also has better size

characteristics than the competing treatments. It also delivers on properly identifying the

number of common factors, with an average value of L = 6.

Results from the even-numbered experiments correspond to data generating processes

which extend the preceding odd-numbered experiment to a setting in which there exists

correlation between the effects and the second regressor. We can see that the treatments

in which such potential correlations are explicitly addressed via the within transformation

(Within, CSSW, KSS) dominate the other estimators in most situations when the temporal
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patterns of the effects are either consistent with the particular estimator’s assumptions

or when they are nested within the estimator’s general treatment of time varying effects.

However, as a general statement, across all experiments only the KSS estimator stands out

as the favored estimator. This is because the misspecification of the temporal pattern of the

effects appears to be as important as the added complication that the effects are correlated

with the second regressors. This issue does not appear to have been given the attention in

the panel data literature that it deserves. Also, because the generation of the Xit via the

VAR specifies a correlated set of regressors, coefficient biases and resulting distortions in

estimated variances and empirical size are not localized in the second coefficient but impact

the first coefficient as well. As n and T increase the KSS estimator again dominates the

other treatments for unobserved heterogeneity.

5 Efficiency Analysis of Banking Industry

5.1 Empirical Model

We next compare the various estimators in an empirical illustration of efficiency changes in

the US banking industry after a series of deregulatory initiatives in the early 1980’s. We

model the multiple output/multiple input banking technology using the output distance

function (Adams, Berger, and Sickles, 1999). The output distance function, D(Y,X) ≤ 1,

provides a radial measure of technical efficiency by specifying the fraction of aggregated

outputs (Y ) produced by given aggregated inputs (X). An m-output, n-input deterministic

distance function can be approximated by∏m
j Y

γj
j∏q

kX
δk
k

≤ 1, (29)

for j = 1, . . . ,m and k = 1, . . . , q where the index j denotes outputs, the index k denotes

inputs, and the γ′js and the δ′ks are weights of outputs and inputs, respectively, describing

the technology of a firm. If it is not possible to increase the index of total output without

either decreasing an output or increasing an input, the firm is producing efficiently or the

value of the distance function equals 1.

The Cobb-Douglas stochastic distance frontier that we utilize below in our empirical

illustration can be derived by multiplying (29) through by the denominator, approximating

the terms using natural logarithms of outputs and inputs, and adding a disturbance term

εit to account for statistical noise. We also specify a nonnegative stochastic term ui(t) for
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the firm specific level of radial technical inefficiency, with variations in time allowed. We

then normalize the outputs with respect to the first output and rearrange to get

ln yJ,it =
m∑
j=1

γj(− ln ŷj,it)−
q∑

k=1

δk(− lnxk,it)− ui(t) + εit,

where yJ is the normalizing output and ŷj,it = yj,it/yJ,it, j = 1, . . . ,m, j 6= J. To streamline

notations, let Yit = ln yJ,it, and define p = m − 1 + q vectors Xit with elements − ln ŷj,it,

, j 6= J , and − lnxk,it. Furthermore, set β = (γ′, δ′), and vi(t) = −ui(t) − β0(t), where

β0(t) := 1
n

∑n
i=1−ui(t). We can then write the stochastic distance frontier as

Yit = β0(t) +X ′itβ + vi(t) + εit. (30)

This model can be viewed as a generic panel data model we introduced in equation (1)

above in which the effects are interpreted as time-varying firm efficiencies, and fits into the

class of frontier models developed and extended by Aigner, Lovell, and Schmidt (1977),

Meeusen and van den Broeck (1977), Schmidt and Sickles (1984), and Cornwell, Schmidt,

and Sickles (1990)9. Once the individual effects vi(t) are estimated, technical efficiency

for a particular firm i at time t is calculated as TEi(t) = exp {vi(t)−maxj=1,...,n(vj(t))}
for the CSSW (Cornwell, Schmidt, and Sickles, 1990) and the KSS estimators. Technical

efficiency is calculated similarly for the standard time-invariant fixed effects and random

effects estimators following Schmidt and Sickles (1984). We also consider the Battese and

Coelli (BC, 1992) estimator which is a likelihood-based random effects estimator wherein

the likelihood function is derived from a mixture of normal noise and an independent one-

sided efficiency error, usually specified as a half-normal. In the BC estimator, effect levels

are allowed to differ across cross-sectional units but their temporal pattern is fixed across

cross-sectional units and are specified as technical efficiencies TEi(t) = exp(−η(t − T ))ξi

where ξi are independent half normal random effects and η parameterizes the temporal

pattern in the firms’ efficiencies.

5.2 Data

We use panel data from 1984 through 1995 for U.S. commercial banks in limited branching

regulatory environment. The data are taken from the Report of Condition and Income

(Call Report) and the FDIC Summary of Deposits10. The data set include 667 banks or

8,004 total observations.

27



The variables used to estimate the Cobb-Douglas stochastic distance frontier are Y =

ln(real estate loans); X = − ln(certificate of deposit), − ln(demand deposit), − ln(retail

time and savings deposit), − ln(labor), − ln(capital), and − ln(purchased funds); Y ∗ =

− ln(commercial and industrial loans/real estate loans), and − ln(installment loans/real

estate loans). For a complete discussion of the approach used in this paper, see Adams,

Berger, and Sickles (1999).

5.3 Empirical Results

The Hausman-Wu test, which tests the correlation assumptions for regressors and indi-

vidual effects, was performed. The test statistic is 203.58, and the null hypothesis of no

correlation is rejected at the 1% significance level. Thus there is strong evidence against the

exogeneity assumption underlying the random effects GLS estimator. Consequently, in the

following analysis we do not report the results from the random effects GLS estimator. The

assumption is also fatal to the consistency of the random effects BC estimator. However,

we will provide estimation results for the BC estimator as well to compare them with those

from the other estimators (Within, CSSW, and KSS) which are robust to the existence of

correlation between regressors and effects.

We test the dimensionality using ∆(l) test. The dimension L is chosen according to the

rule described in Section 3 with the maximum dimension set to 8. Using the 1% significance

level, the critical value is 2.33. With L = 7 the test statistic is 1.36 which is below the

critical value. The optimal choice of dimensionality is thus 711.

< Insert Table 4 and Figure 1 about here >

Table 4 presents parameter estimates from within, BC, CSSW, and KSS12. We have also

calculated Spearman rank correlations of estimated effects between the three estimators.

They show relatively close correspondences, ranging from a low of 0.7937 between KSS

and BC to a high of 0.8974 between KSS and CSSW. Average technical efficiencies for

Within, BC, CSSW, and KSS are 0.4553, 0.6111, 0.6220, 0.6056, respectively13. One

may expect that during the period of deregulation firms tend to become more efficient

due to increased competitive pressures in the industry. Figure 1 displays the temporal

pattern of changes in average efficiency for time-variant efficiency estimators. We can

also construct an estimate of efficiency change over the sample period based on a pooled

estimator that combines estimates from each of the time-varying measures. These results
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indicate a consensus growth of about 0.8% per year in efficiency during the sample period.

Were these rates of cost diminution applied to the US banking industry the implied savings

based on 1995 revenues and costs (Klee and Natalucci, 2005) would be on the order of $30

billion-our estimated measure of the benefits from deregulation of this key service industry.

6 Conclusion

In this paper we have introduced a new approach to estimating temporal heterogeneity

in panel data models. We estimate the effects using the procedure combining smoothing

spline techniques with principal component analysis. In this way, we can approximate

virtually any shapes of time-varying effects. As we have pointed out, these methods can be

transparently ported to the time series literature to address the issues of proper detrending

filters in time series models.

Simulation experiments show that previous estimators, which do not allow for general

temporal variations in effects terms or which misspecify the temporal pattern of variations,

may suffer from serious distortions. On the other hand, our new estimator performs very

well regardless of the assumption on the temporal pattern of individual effects. We have

used this estimator to analyze the technical efficiency of U.S. banks in the limited branching

regulatory environment for relatively small banks for the period of 1984-1995, and discovered

that the relatively small banks in our sample have became more efficient over the years.

The implied savings to the banking industry by 1995, were all banks to have enjoyed a

similar efficiency gain as did our sample banks, is on the order of $30b.

Of course there are extensions of our work that may be pursued. For example, relaxing

covariate exogeneity by framing our model in a multivariate system would appear to be

feasible. Our approach can also be used to address possible nonstationarities in univariate

and multivariate panel systems. Another extension that we are pursuing (Bada, Kneip,

Sickles, 2011) and which holds promise involves extensions of our methods to examine

general panel model approaches using our factor model specification when the disturbance

term exhibits various forms of weak and strong dependencies. Research on robust methods

to control for general forms of unobserved heterogeneiety while consistently estimating

important covariate effects is quite dynamic and holds great promise for development of

many new and improved estimation methods and approaches.
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7 Appendix: Proof of Theorems

The proof of our theorems relies on the following proposition which derives some basic

properties of cubic spline estimators (m = 2). We want to note, however, that our setup is

slightly different from usual spline theory which considers smoothing over the fixed interval

[0, 1].

Proposition 1. For all T ≥ 3

1

T
‖(I −Zκ)v‖2 ≤ 4

κ

T

T−1∑
t=2

(v(t− 1)− 2v(t) + v(t+ 1))2 (A.1)

holds for all possible v = (v(1), . . . , v(T ))′ and all κ > 0. Furthermore, there exist

constants D0, D1, D2 <∞ such that for all sufficiently large T

tr(Z2
κ) ≤ D0

T

max{1, κ1/4}
,

and if κ < 1, then 1
T ‖(I − Zκ)v‖2 ≤ D1κ2

T ‖(I − Z1)v‖2 for all v = (v(1), . . . , v(T ))′.

Proof: We first analyze properties of Zκ. Obviously for every κ > 0 all eigenvalues of

Zκ and of I − Zκ are between 0 and 1. Further properties of this matrix are well studied

for spline estimators defined on the fixed interval [0, 1]. But we have zj(t) = z∗j (t/T ), where

z1, . . . , zT is the natural spline basis used to construct our estimator in Section 3.1, while

z∗1 , . . . , z
∗
T is a basis for all natural splines defined on [0, 1] with knots 1/T, 2/T, . . . , 1. Obvi-

ously, z′′j = z∗
′′
j /T

2. Defining the matrices Z∗ and A∗ = {
∫ 1
1/T z

∗(m)
j (s)z

∗(m)
k (s)ds}j,k=1,...,T

similar to Z, A in Section 3.1, some straightforward arguments show that Zκ = (I +

κ(Z ′)−1AZ−1)−1 = (I + κ
T 4T (Z∗′)−1A∗(Z∗)−1)−1. Let ψ1 < ψ2 < . . . denote the eigenval-

ues of T (Z∗′)−1A∗(Z∗)−1. Since we consider cubic smoothing splines, we have ψ1 = ψ2 = 0,

and the results of Utreras (1983) imply that there exist constants 0 < Q0, Q1 <∞ such that

Q0 ≤ ψj · (πj)−4 ≤ Q1 for all j = 3, . . . , T and all sufficiently large T . Obviously, the eigen-

values of Z2
κ, I−Zκ and (I−Zκ)2 then are 1

(1+κT−4ψj)
2 ,

κT−4ψj
1+κT−4ψj

and
κ2T−8ψ2

j

(1+κT−4ψj)
2 . We can

conclude that there exist constants D1, D2, D
∗
2, D3, D

∗
3 such that tr(Z2

κ) ≤ D2T/max{1, κ4}
and such that for all possible vectors v with (I − Z1)v 6= 0

D∗1κ
2 ≤ v′(I −Zκ)2v

v′(I −Z1)2v
≤ D1κ

2, D∗3κ ≤
v′(I −Zκ)v

v′(I −Z1)v
≤ D3κ, if 0 < κ < 1 (A.2)

Let us now analyze bias for κ ≥ 1. By definition, the vector Zκv is obtained by Zκv =

(ν(1), . . . , ν(T ))′, where ν minimizes 1
T

∑T
t=1(v(t) − ν(t))2 + κ 1

T

∫ T
1 |ν

′′(t)|2dt with respect

to all cubic natural spline functions defined on the knot sequence 1, . . . , T . Let sv denote
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the cubic spline interpolant of v, i.e. sv is the (unique) natural spline function satisfying

sv(t) = v(t) for all t = 1, . . . , T . Since 1
T

∑T
t=1(v(t) − sv(t))2 = 0, we can conclude that

1
T ‖(I − Zκ)v‖2 = 1

T ‖v − Zκv‖
2 ≤ κ 1

T

∫ T
1 s′′v(τ)2dτ .

The well-known properties of cubic spline interpolants (see for example de Boor, 1978)

imply that s′′v(1) = s′′v(T ) = 0, and s′′v(s) = s′′v(t+ 1)[s− t] + s′′v(t)[t+ 1− s] for s ∈ [t, t+ 1].

Therefore,
∫ T
1 s′′v(τ)2dτ =

∑T−1
t=1

1
3(s′′v(t)

2 + s′′v(t + 1)2 + s′′v(t)s
′′
v(t + 1)) ≤

∑T−1
t=2 s

′′
v(t)

2.

Furthermore, the second derivatives of sv at t = 2, . . . , T − 1 are to be computed by the

system of equations s′′v(t− 1) + 4s′′v(t) + s′′v(t+ 1) = 6(v(t− 1)− 2v(t) + v(t+ 1). Hence, if

B denotes the (T − 2) × (T − 2) matrix with Bij = 4 if i = j, Bij = 1 if |i − j| = 1, and

Bij = 0 if |i− j| > 1, i, j = 1, . . . , T − 2, we obtain
s′′v(2)

...

s′′v(T − 1)

 = 6B−1


v(1)− 2v(2) + v(3)

...

v(T − 2)− 2v(T − 1) + v(T )

.

But B is a diagonal dominant matrix and by Gershgorin’s circle theorem its smallest

eigenvalue is larger or equal to 3. It follows that
∑T−1

t=2 s
′′
v(t)

2 ≤ 4
∑T−1

t=2 (v(t− 1)− 2v(t) +

v(t+ 1))2. Relation (A.1) is an immediate consequence.

Proof of Theorem 1: To simplify notation let X̃i = Xi − X̄, X̃ij = Xij − X̄j , and let

κ := min{κ, κ2}. We obtain

β̂ = (
n∑
i=1

X̃ ′i(I −Zκ)X̃i)
−1

n∑
i=1

X̃ ′i(I −Zκ)(Yi − Ȳ )

= β + (
n∑
i=1

X̃ ′i(I −Zκ)X̃i)
−1

n∑
i=1

X̃ ′i(I −Zκ)vi + (
n∑
i=1

X̃ ′i(I −Zκ)X̃i)
−1

n∑
i=1

X̃ ′i(I −Zκ)(εi − ε̄).

Consequently, Eε(β̂)− β = (
∑n

i=1 X̃
′
i(I − Zκ)X̃i)

−1∑n
i=1 X̃

′
i(I − Zκ)vi.

Let gr be defined by (7) when replacing there γrt by the eigenvectors γrt of ΣT :=

E (vivi
′| LT ). Then LT := span{g1, . . . , gL}, and vi =

∑L
r=1 ϑirbr with E(ϑir) = 0. Fur-

thermore, Assumption 3) and Proposition 1 imply that E(ϑ2ir
1
T ‖(I − Zκ)gr‖2) = O(κb(T ))

for all r = 1, . . . , L. Let Xij denote the T -vectors with elements Xitj , t = 1, . . . , T , and

recall that by the Markov inequality we have P (|Zn,T | ≥ δ) ≤ E(|Zn,T |r)/δr for all pos-

sible sequences of random variables |Zn,T | with E(|Zn,T |r) < ∞ and all δ > 0. We thus

necessarily have Zn,T = OP (E(|Zn,T |r)1/r). This generalizes to conditional expectations.

In the general case, the j = 1, . . . , p elements of the vectors
∑n

i=1 X̃
′
i(I −Zκ)vi can thus
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be bounded by

|
n∑
i=1

X̃ ′ij(I −Zκ)vi| ≤ n
L∑
r=1

√√√√| 1
n

n∑
i=1

ϑ2ir| · |g′r(I −Zκ)(
1

n

n∑
i=1

X̃ijX̃ ′ij)(I −Zκ)gr|

We have |g′r(I−Zκ)( 1
n

∑
i X̃ijX̃

′
ij)(I−Zκ)gr| = OP (|g′r(I−Zκ)E[X̃ijX̃

′
ij | LT ](I−Zκ)gr|), and

Assumption 4 thus leads to |g′r(I − Zκ)( 1
n

∑
i X̃ijX̃

′
ij)(I − Zκ)gr| = OP (C1‖(I − Zκ)gr‖2).

Furthermore, 1
n

∑
i ϑ

2
ir = OP (E[ϑ2ir|LT ], and for any random variables Z1, Z2, V1, V2, the

relations Z1 = OP (V1), Z2 = OP (V2) imply that Z1Z2 = OP (V1V2). Together with Assump-

tion 3) and Proposition 1 we can thus conclude that

|
n∑
i=1

X̃ ′ij(I −Zκ)vi| = OP

(
n

L∑
r=1

√
E[ϑ2ir|LT ] · C1 · ‖(I −Zκ)gr‖2

)

= OP

(
n

L∑
r=1

√
C1E[ϑ2ir‖(I −Zκ)gr‖2]

)
= OP (n

√
Tκb(T )).

It follows from (20) as well as (A.2) that (
∑

i X̃
′
i(I − Zκ)X̃i)

−1 = OP ( 1
max{1,κ}nT ). When

combining these arguments we arrive at ‖Eε(β̂)− β‖ = OP ((max{1,κ}b(T )
T )1/2).

Note that Zκz = z and (I−Zκ)z = (I−Zκ)1/2z = 0 for all κ, if z = (z(1), . . . , z(T ))′ is a

linear function. If vi and Xi are ulc-uncorrelated, then in the notation used in the definition

of ulc-uncorrelatedness X̃ ′ij(I −Zκ)1/2 = X̃∗′ij (I −Zκ)1/2, (I −Zκ)1/2vi = (I −Zκ)1/2v∗i , and

therefore

E[X̃ ′ij(I −Zκ)vi)
2|LT ]

= tr
(
E[(I −Zκ)1/2X̃ijX̃

′
ij(I −Zκ)1/2|LT ] ·E[(I −Zκ)1/2viv

′
i(I −Zκ)1/2|LT ]

)
=

L∑
r=1

E[ϑ2ir|LT ] · g′r(I −Zκ)E[X̃ijX̃
′
ij |LT ](I −Zκ)gr = OP (T · κb(T ))

Since due to our normalization E(vi(t)vl(t)) = O(E(vi(t)
2/n), it can be shown by similar

arguments that E[X̃ ′ij(I−Zκ)vi)(X̃
′
lj(I−Zκ)vl|LT ] = OP (T ·κb(T )/n) for i 6= l. Therefore,

E[
∑

i X̃
′
ij(I − Zκ)vi)

2|LT ] = OP (nT · κb(T )), and |
∑

i X̃
′
ij(I − Zκ)vi| = OP (

√
nT · κb(T )),

which leads to ‖Eε(β̂) − β‖ = OP (
√

max{1, κ}b(T )/(nT )). By Assumptions 4) and 5) as

well as (A.2) the assertion on β̂ − Eε(β̂) = (
∑

i X̃
′
i(I − Zκ)X̃i)

−1∑
i X̃
′
i(I − Zκ)(εi − ε̄) =

(
∑

i X̃
′
i(I − Zκ)X̃i)

−1∑
i X̃
′
i(I − Zκ)εi follows from standard arguments.

In order to prove Assertion (b) first note that

v̂i = vi + ri, with ri = −(I −Zκ)vi + Zκ(εi − ε̄) + ZκX̃i(β − β̂).
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Therefore,

Σ̂n,T = Σn,T +B, B =
1

n

n∑
i=1

(vir
′
i + riv

′
i + rir

′
i). (A.3)

Σn,T possesses exactly L nonzero eigenvalues λ1 > . . . λL. Assertion (b) of Lemma A.1

of Kneip and Utikal (2001) implies that for all r = 1, . . . , L

γr − γ̂r = SrBγr +R, with ‖R‖ ≤
6 sup‖a‖=1 a

′B′Ba

mins |λr − λs|2
(A.4)

and with Sr =
∑

s 6=r
1

λs−λrPs−
1
λr
PL+1, where Ps denotes the projection matrix projecting

into the eigenspace corresponding to the eigenvalue λs of Σn,T , while PL+1 = I−
∑L

r=1 γrγ
′
r.

In order to evaluate the above expression we first have to analyze the stochastic order of

magnitude of the different elements of B. Consider the terms appearing in 1
n

∑
i(vir

′
i+riv

′
i).

Using Assumptions 1) - 4) together with Proposition 1 some straightforward arguments now

lead to

sup
‖a‖=1

‖ 1

n

n∑
i=1

(I−Zκ)viv
′
ia‖ ≤

1

n

n∑
i=1

sup
‖a‖=1

|v′ia|
√
v′i(I −Zκ)(I −Zκ)vi = OP (T

√
c(T )κb(T )),

(A.5)

sup
‖a‖=1

‖ 1

n

n∑
i=1

viv
′
i(I−Zκ)a‖ ≤ sup

‖a‖=1

1

n

n∑
i=1

√
v′ivi |v

′
i(I−Zκ)a| = OP (T

√
c(T )κb(T )), (A.6)

sup
‖a‖=1

‖ 1

n

n∑
i=1

(ZκX̃i(β − β̂))v′ia‖ ≤
1

n

n∑
i=1

|v′ia|
√

(β − β̂)′X̃ ′iZ2
κX̃i(β − β̂)

= OP

(
T
√
c(T )d(T )(bβ(n, T, κ) + 1/(nT ))

)
. (A.7)

By similar arguments

sup
‖a‖=1

‖ 1

n

n∑
i=1

vi(ZκX̃i(β − β̂))′a‖ = OP

(
T
√
c(T )d(T )(bβ(n, T, κ) + 1/(nT ))

)
(A.8)

Recall that tr(Z2
κ) = O(T/max{1, κ1/4}). Obviously, E(tr(( 1

n

∑
i viε

′
iZκ)·( 1

n

∑
i Zκεiv

′
i))) =

OP (Tc(T )·tr(Z
2
κ)

n ) = OP (T 2c(T )/(max{1, κ1/4}n)), and 1
n

∑
i viε̄

′Zκ = 0. Therefore

sup
‖a‖=1

‖ 1

n

n∑
i=1

Zκ(εi−ε̄)v′ia‖ ≤ [tr((
1

n

n∑
i=1

viε
′
iZκ)·( 1

n

n∑
i=1

Zκεiv′i))]
1
2 = OP

(
T

√
c(T )

max{1, κ1/4}n

)
,

(A.9)

Similarly,

sup
‖a‖=1

‖ 1

n

n∑
i=1

vi(εi − ε̄)′Zκa‖ = OP

(
T

√
c(T )

max{1, κ1/4}n

)
. (A.10)
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For the leading terms appearing in 1
n

∑
i rir

′
i we obtain

sup
‖a‖=1

‖ 1

n

n∑
i=1

(I −Zκ)viv
′
i(I −Zκ)a‖ = Op(T · κb(T )), (A.11)

sup
‖a‖=1

‖ 1

n

n∑
i=1

(ZκX̃i(β−β̂))(ZκX̃i(β−β̂))′a‖ = OP (Td(T ) · (bβ(n, T, κ) + 1/(nT ))) . (A.12)

Since all eigenvalues of Zκ take values between 0 and 1, we have tr(Zκ)4 ≤ tr(Z2
κ) =

O(T/(max{1, κ1/4}n)), and thus E(tr[( 1
n

∑
i Zκεiε

′
iZκ−σ2Z2

κ) · ( 1
n

∑
i Zκεiε

′
iZκ−σ2Z2

κ)]) =

1
nE(tr[Zκεiε

′
iZκZκεiε

′
iZκ − σ4Z4

κ]) = OP (tr(Z4
κ)/n) = OP (T/(max{1, κ1/4}n)). Therefore,

sup
‖a‖=1

‖ 1

n

n∑
i=1

(Zκ(εi − ε̄)(εi − ε̄)′Zκ − σ2Z2
κ)a‖ = OP

(√
T

max{1, κ1/4}n

)
(A.13)

Assumption 2) additionally implies that 1
λr

= OP ( 1
T ·c(T )) as well as 1

mins |λr−λs| = OP ( 1
T ·c(T )).

When combining (A.4) with (A.5) - (A.13) we thus obtain

‖SrBγr‖ ≤ ‖σ2SrZ2
κγr‖+

1

mins |λr − λs|
‖(B − σ2Z2

κ)γr‖

= ‖σ2SrZ2
κγr‖+OP

(√
κb(T ) + d(T )bβ(n, T, κ)

c(T )
+

√
1

nc(T ) max{1, κ1/4}

)
(A.14)

By definition of Sr we have Srγr = 0. Furthermore, Assumption 3 implies that ‖(I −
Zκ)γr‖ = OP ((κb(T )c(T ) )1/2). Hence,

‖σ2SrZ2
κγr‖ ≤ ‖σ2Sr(I −Zκ)γr‖+ ‖σ2SrZκ(I −Zκ)γr‖ = OP (

(κb(T ))1/2

Tc(T )3/2
), (A.15)

Let us now consider the remainder term R in (A.4). Note that all eigenvalues of Zκ are

less or equal to 1, and thus sup‖a‖=1 a
′Z4
κa ≤ 1. Relations (A.5) - (A.13) then imply

sup‖a‖=1 a
′B′Ba

mins |λr − λs|2
≤ 2

sup‖a‖=1 a
′(B − σ2Z2

κ)′(B − σ2Z2
κ)a

mins |λr − λs|2
+ 2

sup‖a‖=1 a
′Z4
κa

mins |λr − λs|2

= OP

(
κb(T ) + d(T )bβ(n, T, κ)

c(T )
+

1

T 2c(T )2
+

1

nc(T ) max{1, κ1/4}
)

)
(A.16)

By (A.4), (A.14), (A.15) and (A.16) the asserted rate of convergence follows from

T−1/2‖gr−ĝr‖ = ‖γr−γ̂r‖ = OP

(√
κb(T ) + d(T )bβ(n, T, κ)

c(T )
+

1

T 2c(T )2
+

√
1

nc(T ) max{1, κ1/4}

)
.
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Let us switch to Assertion (c). Definition of θ̂ir as well as Assertions a) and b) imply

θ̂ri =
1

T
ĝ′r(Yi − Ȳ − X̃iβ̂) =

1

T
g′r(Yi − Ȳ − X̃iβ̂) +

1

T
(ĝr − gr)′(Yi − Ȳ − X̃iβ̂)

= θri +
1

T
g′r(εi − ε̄) +OP

(√
κb(T ) + d(T )bβ(n, T, κ) + (nmax{1, κ1/4})−1

)
.

Note that
√
T 1
T g
′
r(εi− ε̄) =

√
T · 1T g

′
rεi+oP (1). Since 1

T g
′
rgr = 1 we immediately obtain

√
T ·

1
T g
′
rεi →d N(0, σ2). The asserted rate of convergence is an immediate consequence. Note

that due to g′rgs = 0 the random variables g′rεi and g′sεi are uncorrelated for r 6= s. Hence,

if additionally κb(T ) + d(T )bβ(n, T, κ) + (nmax{1, κ1/4})−1 = o(T−1), the assertion on the

multivariate distribution of
√
T (θ̂1i − θ1i, . . . , θ̂Li − θLi)′ follows from standard arguments.

Since obviously

‖vi −
L∑
r=1

θ̂riĝr‖ = ‖
L∑
r=1

(θri − θ̂ri)gr +
L∑
r=1

θ̂ri(gr − ĝr)‖,

Assertion d) is a straightforward consequence of Assumption 2) as well as Assertions b) and

c). It remains to prove assertion (e). First note that

v̂i = Zκvi + r̃i, with r̃i = Zκ(εi − ε̄) + ZκX̃i(β − β̂).

Consequently, with Σ̃n = Zκ( 1
n

∑
i viv

′
i)Zκ we obtain

Σ̂n = Σ̃n + B̃, B̃ =
1

n

∑
i

(Zκvir̃′i + r̃iv
′
iZκ + r̃ir̃

′
i).

Σ̃n possesses only L nonzero eigenvalues λ̃1 ≥ · · · ≥ λ̃L with corresponding eigenvectors

γ̃1, . . . , γ̃L. Our assumptions and arguments similar to (A.4) - (A.16) then show that λ̃r =

O(Tc(T )), 1
mins |λ̃r−λ̃s|

= OP ( 1
T ·c(T )), ‖γr − γ̃r‖ = OP (

√
κb(T )
c(T ) ), and

‖γ̂r − γ̃r‖ = OP

(√
d(T )bβ(n, T, κ)

c(T )
+

1

T 2c(T )2
+

√
1

nc(T ) max{1, κ1/4}

)
(A.17)

for all r, s = 1, . . . , L, r 6= s.

Assertion (a) of Lemma A.1. of Kneip and Utikal (2001) implies that

T∑
r=L+1

λ̂r = tr(PLB̃) +R∗, with R∗ ≤
6L sup‖a‖=1 a

′B̃′B̃a

mins |λ̃r − λ̃s|
(A.18)

where PL = I −
∑L

r=1 γ̃rγ̃
′
r. Using again arguments similar to the proof of Assertion (c) it

is easily seen that

6L sup‖a‖=1 a
′B̃′B̃a

mins |λ̃r − λ̃s|
= OP

(
Td(T )bβ(n, T, κ)2 +

1

Tc(T )
+

T

nmax{1, κ1/4}

)
, (A.19)
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tr(PLB̃) = tr

(
1

n

n∑
i=1

PLZκX̃i(β − β̂)(β − β̂)′X̃ ′iZκ

)
+tr

(
PLZκ(

1

n

n∑
i=1

(εi − ε̄)(εi − ε̄)′)Zκ

)
.

Some straightforward computations lead to

E

(
tr(PLZκ(

1

n

n∑
i=1

(εi − ε̄)(εi − ε̄)′)Zκ)

)
= σ2(1− 1

n
)tr(ZκPLZκ),

Var

(
tr(PLZκ(

1

n

n∑
i=1

(εi − ε̄)(εi − ε̄)′)Zκ)

)
=

2σ4

n
· tr((ZκP̂LZκ)2) · (1 + oP (1)) = OP

(
tr(Z4

κ)

n

)

Moreover, tr(Z4
κ/n) = O(T/(nmax{1, κ1/4})). Since tr( 1

n

∑
i PLZκX̃i(β−β̂)(β−β̂)′X̃ ′iZκPL) =

OP

(
Td(T )bβ(n, T, κ) + d(T )

n

)
and since by assumption Td(T )bβ(n, T, κ)+d(T )

n = o
(√

T/(nmax{1, κ1/4}
)

one may invoke standard arguments to show that

tr(PLB̃) − σ2
(
1− 1

n

)
tr(ZκPLZκ)√

2σ4

n · tr((ZκPLZκ)2)
→d N(0, 1). (A.20)

Since tr(PLB̃) = tr(PLΣ̂n), (24) is an immediate consequence. By (A.17)- (A.19) , Relation

(A.20) remains valid when tr(PLB̃) is replaced by
∑T

r=L+1 λ̂r as well as PL by P̂L. This

proves (23) and hence completes the proof of the theorem. �

Proof of Theorem 2: It follows from arguments similar to those used in the proof of

Theorem 1 that

σ̂2 =
1

(n− 1) · tr((I −Zκ)2)

n∑
i=1

(εi − ε̄)′(I −Zκ)2(εi − ε̄)

+
1

(n− 1) · tr((I −Zκ)2)

n∑
i=1

v′i(I −Zκ)2vi +OP

(
d(T )1/2κb(T ) · (κbβ(n, T ) +

1√
nT

)

)
.

Obviously, E
(

1
(n−1)·tr((I−Zκ)2)

∑
i(εi − ε̄)′(I −Zκ)2(εi − ε̄)

)
= σ2and the properties of Zκ

imply that the variance of this term converges to 0 in probability. Consequently, with

0 ≤ Rn,T =
1

(n− 1) · tr((I −Zκ)2)

n∑
i=1

v′i(I −Zκ)2vi = Op(max{1, κ}b(T )) (A.21)

we obtain

σ̂2 = σ2 +Rn,T + op (1) . (A.22)
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Let us now consider the behavior of ∆(l) for l < L. We can infer from (A.22) that

∆(l) =

n∑L
r=l+1 λ̂r − (n− 1)(σ2 +Rn,T ) · tr(Zκ(P̂l − P̂L)Zκ)− (n− 1)Rn,T · tr(ZκP̂lZκ)

σ̂2
√

2n · tr((ZκP̂lZκ)2)

+
n
∑T

r=L+1 λ̂r − (n− 1)σ2 · tr(ZκP̂LZκ)

σ̂2
√

2n · tr((ZκP̂lZκ)2)

 (1 + oP (1)). (A.23)

By Assumption 2) and Theorem 1d) n
∑L

r=l+1 λ̂r =
∑L

r=l+1 T
∑

i θ̂
2

ir is of order nTc(T ),

while (n−1)(σ2+Rn,T )·tr(Zκ(P̂l−P̂L)Zκ) = OP (n), (n−1)Rn,T ·tr(ZκP̂lZκ) = oP (nTc(T )),

and

√
2nσ̂4 · tr((ZκP̂lZκ)2) = OP ((nT )1/2). Consequently, the first term on the right hand

side of (A.23) increases as n, T →∞, while the second term is still bounded in probability.

We can thus infer that for any l < L

P(∆(l) > z1−α)→ 1,P(∆(l) > log(min{n, T})→ 1, and therefore P(L̂ 6= l)→ 1

(A.24)

as n, T →∞. Since Rn,T ≥ 0, Theorem 1(e) implies that for fixed α > 0

lim sup
n,T→∞

P(∆(L) ≥ z1−α) ≤ α, while lim
n,T→∞

P(∆(L) ≥ z1−αn,T ) = 0 if αn,T → 0 (A.25)

The assertions of the theorem are now immediate consequences of (A.24) and (A.25). �
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Notes

1In our conditions (a) - (c) sample averages could be replaced by expectations in (a) and (b) (for example

E(θirθis) = 0 or, more generally, E(θirθis|LT ) = 0 in case LT is a random space). We would then have

another standardization which would lead to different basis functions, let us call them g∗r , which could

be determined from the eigenvectors of the (conditional) covariance matrix ΣT . Bai and others exactly

use this standardization. In this case g∗r still depends on T , but not on n. For this case, however,

the g∗r do not provide any additional information compared to our n-dependent gr. The reason is that

vi(t) =
∑L
r=1 θ

∗
irg
∗
r =

∑L
r=1 θirgr for any possible realization vi. Thus the g∗1 , . . . , g

∗
L and g1 . . . , gL simply

define different possible parametrizations of vi. Nevertheless, we could use g∗1 , . . . , g
∗
L instead of g1 . . . , gL

to derive theoretical results. There are, however, disadvantages. Additional notation would be necessary

resulting in a longer paper with little obvious value added. Furthermore, the difference between g∗r and

gr is of order n−1/2. Consequently, when considering the differences ‖g∗r − ĝr‖ and ‖θ∗ir − θ̂ir‖ there will

exist an additional error of order n−1/2, and rates of convergence deteriorate. This introduces some quite

“artificial” bias since it only reflects the difference of standardization and not a true difference in describing

and modeling vi.
2After having estimated the components of (4), one may additionally be interested in estimating the mean

function β0(t) in (1). When assuming that β0 also adopts an expansion of the form β0(t) =
∑L
r=1 θ̄rgr(t), es-

timates of the coefficients θ̄r may be determined by minimizing
∑T
t=1(Ȳt−

∑p
j=1 β̂jX̄tj−

∑L
r=1 ϑr ĝr(t))

2 over

ϑ1, . . . , ϑL. A more general approach consists in a nonparametric estimation similar to Step 1. Convergence

rates can be obtained in a way similar to Theorem 1 below.
3The choice of the smoothing parameter affects the behavior of our estimators. It is known that one

can characterize behavior of the effect of the smoothing parameter on the estimated functional form as κ

tends to infinity. For example, when the penalty is the integrated quadratic of the higher derivative, the

asymptotic form is a polynomial trend of order related to the derivative order, as shown in the Appendix of

Phillips (2010).
4Note that our estimator β̂ of β does not depend on L. Arguments similar to those used in the proof of

Theorem 2 imply that for any l < L there exists some al > 0 such that P ( 1
nT

∑n
i=1 ‖Yi − Ȳ − (Xi − X̄)β̂ −∑l

r=1 θ̂ir ĝr‖
2 ≥ σ2 + al)→ 1 as n, T →∞. For L ≤ l ≤ Lmax a generalization of the arguments of Bai and

Ng (2002) leads to | 1
nT

∑n
i=1 ‖Yi − Ȳ − (Xi − X̄)β̂ −

∑l
r=1 θ̂ir ĝr‖

2 − σ2| = OP (min{n, T}−1). Consistency

of the Bai and Ng criteria is an immediate consequence.
5Let Xit,2 be the endogenous part of the regressors Xit generated by (27). In order to generate a regressor

that is correlated with vi(t), we define a variable, Wit, such that Wit = ρvi(t) + σv
√

1− ρ2εit where σv is

the standard deviation of vi(t) and εit ∼N(0, 1). Then, we see that Corr(Wit, vi(t)) = ρ = 0.5. With this

Wit, we generate X̃it,2 = Xit,2 +Wit, which is used as the endogenous regressor. Here, Xit,2 +σv
√

1− ρ2εit
and ρvi(t) constitute the exogenous part and endogenous part, respectively. Note that, in generating Wit,

the effects vi(t) is multiplied by 10 to balance with the magnitude of Xit,2.
6We let κ = (1− p)/p and choose p among a selected grid of 9 equally spaced values between 0.1 and 0.9.
7The full set of Monte Carlo results can be found at ‘http://www.ruf.rice.edu/˜rsickles/working%20papers

/Sickles Tables%201-12.pdf’.
8A referee asked for a comparison with the Bai and Ng (2002) criteria for the selection of the number
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of factors. We ran a number of comparable Monte Carlo experiments that are available on request. We

used the same DGP1-10 and tested for the number of factors for n=30, 100, 300 and for T=12, 30. For

DGP1-8, the maximum dimension of factors is set to 5 and for DGP9-10 it is set at 8. In our simulation

experiments, we estimated the number of factors using all six criteria proposed by Bai and Ng (2002). As

noted in their paper, the criteria are inadequate for small n or T and we verify these findings when T=12

or n=30. We also find that the IC criterion tends to underparametrize, while the PC criterion tends to

overparametrize. Particularly, for DGP9 and 10 where there are 6 different types of factors and the factors

are correlated with regressors, the performances of Bai and Ng’s criteria are very poor and unstable across

different n and T. Indeed Bai and Ng mention in their 2002 paper (page 203) that their methods work well

only when min{n,T} is 40 or larger. However, our simulation setup is for T=12, 30 which are quite small

numbers for Bai and Ng’s method. Our simulation results show exactly what is expected, that is, the IC

criterion tends to underparameterize (for DGP1, 2) and the PC tends to overparameterize (for DGP3˜8).
9In keeping with the stochastic frontier paradigm we allow the technical efficiency to be correlated with

the potentially distorted relative output allocations − ln ŷj,it.
10For a more detailed discussion of data, see the Appendix in Jayasiriya (2000).
11When we assume L = 1 and test the null hypothesis that the individual effect is constant, the test

statistic (27) is 73.91. Thus the null hypothesis of linear individual effect is strongly rejected.
12We report results with ray returns to scale set to one. No significant ray scale economies appear to

exist using these treatments and in other analysis conducted by the authors with these data. Moreover, the

equivalence of input and output oriented technical efficiency is preserved when scale economies are unity,

thus avoiding difficutlies in interpretation that have been pointed out often in the productivity literature.
13To calculate efficiency scores from the effects estimators, the effects estimates are trimmed at the top and

bottom 5% level (see Berger, 1993). This does not apply to the BC estimator because it directly calculates

efficiencies. For the time-varying effects estimators, the firms which enter the top and bottom 5% range of

effects in any time periods were excluded in calculating average efficiencies. Therefore, in this sense, it is

not fair to directly compare the efficiencies from the Within or BC estimators with those from the CSS and

KSS estimators.
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Table 1. Monte Carlo Simulation Results for DGP1

MSE of Effects

n T Within GLS CSSW KSS L

30 12 0.1770 0.1745 0.0091 0.0091 2.405
30 0.1666 0.1663 0.0036 0.0043 2.804

100 12 0.1285 0.1280 0.0072 0.0073 2.963
30 0.1240 0.1240 0.0029 0.0030 3.010

300 12 0.1025 0.1025 0.0059 0.0060 3.002
30 0.1001 0.1001 0.0024 0.0025 3.006

MSE, Bias, Variance, and Size for Coefficients

T=12 T=30

n=30 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0725 0.0637 0.0087 0.0087 0.0247 0.0235 0.0024 0.0026
BIAS1 0.0004 0.0306 0.0015 0.0002 0.0055 0.0169 -0.0008 -0.0012
BIAS2 0.0014 0.0315 0.0012 0.0007 -0.0026 0.0087 0.0003 -0.0003
VAR1 0.0355 0.0302 0.0043 0.0044 0.0122 0.0115 0.0012 0.0013
VAR2 0.0370 0.0316 0.0044 0.0044 0.0124 0.0117 0.0012 0.0012
SIZE1 0.143 0.137 0.083 0.095 0.177 0.168 0.059 0.081
SIZE2 0.171 0.155 0.075 0.087 0.153 0.156 0.048 0.060

n=100 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0186 0.0164 0.0027 0.0027 0.0068 0.0065 0.0007 0.0007
BIAS1 -0.0023 -0.0060 0.0004 0.0004 -0.0013 -0.0024 -0.0002 -0.0003
BIAS2 0.0031 -0.0007 0.0015 0.0015 -0.0008 -0.0019 0.0000 0.0001
VAR1 0.0095 0.0083 0.0012 0.0013 0.0033 0.0031 0.0004 0.0004
VAR2 0.0091 0.0080 0.0014 0.0015 0.0035 0.0034 0.0004 0.0004
SIZE1 0.163 0.149 0.068 0.072 0.164 0.163 0.058 0.072
SIZE2 0.154 0.140 0.096 0.096 0.171 0.162 0.067 0.068

n=300 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0061 0.0061 0.0009 0.0009 0.0021 0.0021 0.0002 0.0002
BIAS1 -0.0021 -0.0178 -0.0004 -0.0002 -0.0014 -0.0071 -0.0001 0.0000
BIAS2 -0.0005 -0.0162 0.0016 0.0015 0.0031 -0.0027 0.0004 0.0004
VAR1 0.0032 0.0029 0.0005 0.0005 0.0011 0.0011 0.0001 0.0001
VAR2 0.0029 0.0026 0.0004 0.0004 0.0010 0.0009 0.0001 0.0001
SIZE1 0.154 0.176 0.092 0.094 0.186 0.180 0.070 0.076
SIZE2 0.160 0.150 0.060 0.062 0.146 0.132 0.060 0.060
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Table 2. Monte Carlo Simulation Results for DGP3

MSE of Effects

n T Within GLS CSSW KSS L

30 12 0.1655 0.1630 0.0601 0.0170 1.005
30 0.0976 0.0975 0.0692 0.0100 1.000

100 12 0.1554 0.1547 0.0491 0.0117 1.000
30 0.0890 0.0890 0.0624 0.0074 1.000

300 12 0.1480 0.1484 0.0450 0.0103 1.000
30 0.0860 0.0861 0.0597 0.0065 1.000

MSE, Bias, Variance, and Size for Coefficients

T=12 T=30

n=30 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0241 0.0208 0.0137 0.0047 0.0070 0.0067 0.0066 0.0019
BIAS1 0.0003 0.0139 0.0011 -0.0024 0.0055 0.0091 0.0061 0.0003
BIAS2 0.0043 0.0180 0.0037 0.0000 -0.0003 0.0033 -0.0006 -0.0017
VAR1 0.0120 0.0101 0.0063 0.0022 0.0035 0.0034 0.0034 0.0009
VAR2 0.0121 0.0102 0.0074 0.0025 0.0034 0.0033 0.0032 0.0010
SIZE1 0.100 0.100 0.079 0.055 0.111 0.114 0.120 0.046
SIZE2 0.118 0.102 0.090 0.059 0.107 0.103 0.115 0.065

n=100 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0097 0.0084 0.0049 0.0014 0.0020 0.0020 0.0019 0.0005
BIAS1 -0.0045 -0.0065 -0.0012 -0.0013 0.0001 -0.0028 -0.0002 0.0010
BIAS2 -0.0031 -0.0049 -0.0019 0.0006 0.0003 -0.0025 -0.0005 0.0012
VAR1 0.0045 0.0039 0.0024 0.0007 0.0010 0.0010 0.0010 0.0003
VAR2 0.0052 0.0045 0.0025 0.0007 0.0010 0.0010 0.0010 0.0003
SIZE1 0.098 0.090 0.082 0.045 0.085 0.085 0.107 0.049
SIZE2 0.130 0.115 0.105 0.050 0.099 0.098 0.107 0.044

n=300 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0034 0.0043 0.0017 0.0005 0.0007 0.0007 0.0006 0.0002
BIAS1 -0.0002 -0.0266 -0.0017 0.0029 -0.0019 -0.0065 -0.0003 0.0020
BIAS2 0.0011 -0.0252 -0.0005 0.0033 0.0002 -0.0044 -0.0005 0.0015
VAR1 0.0018 0.0015 0.0008 0.0002 0.0003 0.0003 0.0003 0.0001
VAR2 0.0016 0.0014 0.0009 0.0002 0.0004 0.0003 0.0003 0.0001
SIZE1 0.114 0.176 0.080 0.054 0.090 0.104 0.098 0.046
SIZE2 0.104 0.152 0.094 0.048 0.082 0.084 0.090 0.046
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Table 3. Monte Carlo Simulation Results for DGP9

MSE of Effects

n T Within GLS CSSW KSS L

30 12 0.1792 0.1781 0.0468 0.0013 4.957
30 0.1654 0.1653 0.0558 0.0004 5.000

100 12 0.1545 0.1540 0.0427 0.0006 5.000
30 0.1568 0.1567 0.0600 0.0002 6.000

300 12 0.1823 0.1821 0.0578 0.0003 6.000
30 0.1904 0.1903 0.0746 0.0003 6.000

MSE, Bias, Variance, and Size for Coefficients

T=12 T=30

n=30 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 13.3517 12.4807 5.3708 0.2495 4.3252 4.2655 1.5867 0.0141
BIAS1 -0.1185 -0.7992 0.0748 0.0261 -0.0112 -0.2617 0.0109 0.0027
BIAS2 0.0952 -0.5965 0.0290 0.0088 -0.0467 -0.2961 -0.0004 0.0003
VAR1 6.8048 5.8531 2.6004 0.1262 2.1655 2.0557 0.8162 0.0071
VAR2 6.5238 5.6330 2.7639 0.1225 2.1574 2.0536 0.7704 0.0069
SIZE1 0.165 0.173 0.172 0.196 0.157 0.157 0.152 0.125
SIZE2 0.156 0.147 0.189 0.197 0.168 0.163 0.144 0.120

n=100 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 3.8630 3.3662 1.6696 0.0342 1.3015 1.2465 0.5392 0.0021
BIAS1 0.1020 0.0316 0.0866 0.0039 -0.0172 -0.0445 -0.0271 0.0021
BIAS2 0.0578 -0.0123 -0.0087 0.0013 0.0058 -0.0221 0.0096 -0.0007
VAR1 1.9732 1.7301 0.8488 0.0179 0.6622 0.6333 0.2860 0.0011
VAR2 1.8761 1.6350 0.8133 0.0163 0.6390 0.6107 0.2523 0.0011
SIZE1 0.153 0.138 0.172 0.140 0.147 0.141 0.149 0.069
SIZE2 0.136 0.121 0.160 0.119 0.156 0.153 0.128 0.070

n=300 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 1.3521 1.1517 0.6465 0.0065 0.4562 0.4314 0.1850 0.0009
BIAS1 0.0367 -0.0087 0.0234 0.0069 0.0104 0.0025 0.0186 0.0011
BIAS2 0.0382 -0.0045 0.0008 -0.0025 0.0028 -0.0044 -0.0198 -0.0017
VAR1 0.7071 0.6006 0.3303 0.0031 0.2310 0.2186 0.0891 0.0005
VAR2 0.6423 0.5509 0.3156 0.0034 0.2250 0.2128 0.0952 0.0004
SIZE1 0.182 0.154 0.178 0.132 0.162 0.154 0.136 0.060
SIZE2 0.166 0.152 0.170 0.132 0.168 0.166 0.162 0.054
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Table 4. Estimation Results

Within BC CSSW KSS

CD -0.0357 (0.0047) -0.0332 (0.0043) -0.0095 (0.0032) -0.0008 (0.0019)
DD -0.0678 (0.0155) -0.0244 (0.0124) -0.0908 (0.0134) -0.0410 (0.0109)
OD -0.1451 (0.0097) -0.1433 (0.0091) -0.1295 (0.0069) -0.0440 (0.0200)
lab -0.1517 (0.0165) -0.1403 (0.0130) -0.1639 (0.0139) -0.1254 (0.0093)
cap -0.0456 (0.0054) -0.0523 (0.0048) -0.0461 (0.0054) -0.0289 (0.0053)
purf -0.5522 (0.0208) -0.6065 (0.0151) -0.5601 (0.0162) -0.7598 (0.0268)
ciln 0.1583 (0.0045) 0.1596 (0.0042) 0.1468 (0.0037) 0.1202 (0.0031)
inln 0.3745 (0.0061) 0.3639 (0.0054) 0.3512 (0.0056) 0.3237 (0.0050)
time 0.0154 (0.0009) 0.0023 (0.0013) - -

Avg TE 0.4553 0.6111 0.6220 0.6056

Figure 1

47


